6tb3: Difference between revisions
New page: '''Unreleased structure''' The entry 6tb3 is ON HOLD Authors: Description: Category: Unreleased Structures |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==yeast 80S ribosome in complex with the Not5 subunit of the CCR4-NOT complex== | |||
<StructureSection load='6tb3' size='340' side='right'caption='[[6tb3]], [[Resolution|resolution]] 2.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[6tb3]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TB3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6TB3 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.8Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=M2G:N2-DIMETHYLGUANOSINE-5-MONOPHOSPHATE'>M2G</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SPD:SPERMIDINE'>SPD</scene>, <scene name='pdbligand=T6A:N-[N-(9-B-D-RIBOFURANOSYLPURIN-6-YL)CARBAMOYL]THREONINE-5-MONOPHOSPHATE'>T6A</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6tb3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tb3 OCA], [https://pdbe.org/6tb3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6tb3 RCSB], [https://www.ebi.ac.uk/pdbsum/6tb3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6tb3 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/RSSA1_YEAST RSSA1_YEAST] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits.<ref>PMID:9973221</ref> <ref>PMID:14627813</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Control of messenger RNA (mRNA) decay rate is intimately connected to translation elongation, but the spatial coordination of these events is poorly understood. The Ccr4-Not complex initiates mRNA decay through deadenylation and activation of decapping. We used a combination of cryo-electron microscopy, ribosome profiling, and mRNA stability assays to examine the recruitment of Ccr4-Not to the ribosome via specific interaction of the Not5 subunit with the ribosomal E-site in Saccharomyces cerevisiae This interaction occurred when the ribosome lacked accommodated A-site transfer RNA, indicative of low codon optimality. Loss of the interaction resulted in the inability of the mRNA degradation machinery to sense codon optimality. Our findings elucidate a physical link between the Ccr4-Not complex and the ribosome and provide mechanistic insight into the coupling of decoding efficiency with mRNA stability. | |||
The Ccr4-Not complex monitors the translating ribosome for codon optimality.,Buschauer R, Matsuo Y, Sugiyama T, Chen YH, Alhusaini N, Sweet T, Ikeuchi K, Cheng J, Matsuki Y, Nobuta R, Gilmozzi A, Berninghausen O, Tesina P, Becker T, Coller J, Inada T, Beckmann R Science. 2020 Apr 17;368(6488). pii: 368/6488/eaay6912. doi:, 10.1126/science.aay6912. PMID:32299921<ref>PMID:32299921</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
[[Category: | </div> | ||
<div class="pdbe-citations 6tb3" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ribosome 3D structures|Ribosome 3D structures]] | |||
*[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Saccharomyces cerevisiae S288C]] | |||
[[Category: Becker T]] | |||
[[Category: Beckmann R]] | |||
[[Category: Berninghausen O]] | |||
[[Category: Buschauer R]] | |||
[[Category: Cheng J]] | |||
[[Category: Tesina P]] |
Latest revision as of 13:17, 22 May 2024
yeast 80S ribosome in complex with the Not5 subunit of the CCR4-NOT complexyeast 80S ribosome in complex with the Not5 subunit of the CCR4-NOT complex
Structural highlights
FunctionRSSA1_YEAST Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits.[1] [2] Publication Abstract from PubMedControl of messenger RNA (mRNA) decay rate is intimately connected to translation elongation, but the spatial coordination of these events is poorly understood. The Ccr4-Not complex initiates mRNA decay through deadenylation and activation of decapping. We used a combination of cryo-electron microscopy, ribosome profiling, and mRNA stability assays to examine the recruitment of Ccr4-Not to the ribosome via specific interaction of the Not5 subunit with the ribosomal E-site in Saccharomyces cerevisiae This interaction occurred when the ribosome lacked accommodated A-site transfer RNA, indicative of low codon optimality. Loss of the interaction resulted in the inability of the mRNA degradation machinery to sense codon optimality. Our findings elucidate a physical link between the Ccr4-Not complex and the ribosome and provide mechanistic insight into the coupling of decoding efficiency with mRNA stability. The Ccr4-Not complex monitors the translating ribosome for codon optimality.,Buschauer R, Matsuo Y, Sugiyama T, Chen YH, Alhusaini N, Sweet T, Ikeuchi K, Cheng J, Matsuki Y, Nobuta R, Gilmozzi A, Berninghausen O, Tesina P, Becker T, Coller J, Inada T, Beckmann R Science. 2020 Apr 17;368(6488). pii: 368/6488/eaay6912. doi:, 10.1126/science.aay6912. PMID:32299921[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|