2kom: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
New page: '''Unreleased structure''' The entry 2kom is ON HOLD Authors: Volkman, B.F., Tyler, R.C., Peterson, F.C. Description: Solution structure of humar Par-3b PDZ2 (residues 451-549) ''Page...
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 2kom is ON HOLD
==Solution structure of humar Par-3b PDZ2 (residues 451-549)==
<StructureSection load='2kom' size='340' side='right'caption='[[2kom]]' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2kom]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KOM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KOM FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kom FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kom OCA], [https://pdbe.org/2kom PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kom RCSB], [https://www.ebi.ac.uk/pdbsum/2kom PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kom ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/PARD3_HUMAN PARD3_HUMAN] Adapter protein involved in asymmetrical cell division and cell polarization processes. Seems to play a central role in the formation of epithelial tight junctions. Targets the phosphatase PTEN to cell junctions (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly. The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins. Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons.<ref>PMID:19812038</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ko/2kom_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2kom ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Three-dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time-consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi-automated protocol for isotopically-labeled protein production using the Maxwell-16, a commercially available bench top robot, that allows for single-step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different (15)N-labeled proteins, accelerating the validation process by more than 10-fold. The yield from a single channel of the Maxwell-16 is sufficient for acquisition of a high-quality 2D (1)H-(15)N-HSQC spectrum using a 3-mm sample cell and 5-mm cryogenic NMR probe. Maxwell-16 screening of a control group of proteins reproduced previous validation results from conventional small-scale expression screening and large-scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par-3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U-(15)N,(13)C] protein prepared using the Maxwell-16. This novel semi-automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale-up steps.


Authors: Volkman, B.F., Tyler, R.C., Peterson, F.C.
Rapid, robotic, small-scale protein production for NMR screening and structure determination.,Jensen DR, Woytovich C, Li M, Duvnjak P, Cassidy MS, Frederick RO, Bergeman LF, Peterson FC, Volkman BF Protein Sci. 2010 Mar;19(3):570-8. PMID:20073081<ref>PMID:20073081</ref>


Description: Solution structure of humar Par-3b PDZ2 (residues 451-549)
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Oct  7 13:38:11 2009''
<div class="pdbe-citations 2kom" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Peterson FC]]
[[Category: Tyler RC]]
[[Category: Volkman BF]]

Latest revision as of 12:40, 22 May 2024

Solution structure of humar Par-3b PDZ2 (residues 451-549)Solution structure of humar Par-3b PDZ2 (residues 451-549)

Structural highlights

2kom is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PARD3_HUMAN Adapter protein involved in asymmetrical cell division and cell polarization processes. Seems to play a central role in the formation of epithelial tight junctions. Targets the phosphatase PTEN to cell junctions (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly. The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins. Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Three-dimensional protein structure determination is a costly process due in part to the low success rate within groups of potential targets. Conventional validation methods eliminate the vast majority of proteins from further consideration through a time-consuming succession of screens for expression, solubility, purification, and folding. False negatives at each stage incur unwarranted reductions in the overall success rate. We developed a semi-automated protocol for isotopically-labeled protein production using the Maxwell-16, a commercially available bench top robot, that allows for single-step target screening by 2D NMR. In the span of a week, one person can express, purify, and screen 48 different (15)N-labeled proteins, accelerating the validation process by more than 10-fold. The yield from a single channel of the Maxwell-16 is sufficient for acquisition of a high-quality 2D (1)H-(15)N-HSQC spectrum using a 3-mm sample cell and 5-mm cryogenic NMR probe. Maxwell-16 screening of a control group of proteins reproduced previous validation results from conventional small-scale expression screening and large-scale production approaches currently employed by our structural genomics pipeline. Analysis of 18 new protein constructs identified two potential structure targets that included the second PDZ domain of human Par-3. To further demonstrate the broad utility of this production strategy, we solved the PDZ2 NMR structure using [U-(15)N,(13)C] protein prepared using the Maxwell-16. This novel semi-automated protein production protocol reduces the time and cost associated with NMR structure determination by eliminating unnecessary screening and scale-up steps.

Rapid, robotic, small-scale protein production for NMR screening and structure determination.,Jensen DR, Woytovich C, Li M, Duvnjak P, Cassidy MS, Frederick RO, Bergeman LF, Peterson FC, Volkman BF Protein Sci. 2010 Mar;19(3):570-8. PMID:20073081[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Khazaei MR, Puschel AW. Phosphorylation of the par polarity complex protein Par3 at serine 962 is mediated by aurora a and regulates its function in neuronal polarity. J Biol Chem. 2009 Nov 27;284(48):33571-9. doi: 10.1074/jbc.M109.055897. Epub 2009, Oct 6. PMID:19812038 doi:10.1074/jbc.M109.055897
  2. Jensen DR, Woytovich C, Li M, Duvnjak P, Cassidy MS, Frederick RO, Bergeman LF, Peterson FC, Volkman BF. Rapid, robotic, small-scale protein production for NMR screening and structure determination. Protein Sci. 2010 Mar;19(3):570-8. PMID:20073081 doi:10.1002/pro.335
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA