2ki7: Difference between revisions
No edit summary |
No edit summary |
||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The | ==The solution structure of RPP29-RPP21 complex from Pyrococcus furiosus== | ||
<StructureSection load='2ki7' size='340' side='right'caption='[[2ki7]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2ki7]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_furiosus_DSM_3638 Pyrococcus furiosus DSM 3638]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KI7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KI7 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ki7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ki7 OCA], [https://pdbe.org/2ki7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ki7 RCSB], [https://www.ebi.ac.uk/pdbsum/2ki7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ki7 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/RNP1_PYRFU RNP1_PYRFU] Part of ribonuclease P, a protein complex that generates mature tRNA molecules by cleaving their 5'-ends. The RNA is catalytic, but its KM for pre-tRNA is 170-fold decreased in the presence of the 4 known protein subunits (Rnp1-4). The protein subunits also decrease the amount of Mg(2+) needed for activity.<ref>PMID:17053064</ref> <ref>PMID:21683084</ref> <ref>PMID:22298511</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ki/2ki7_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ki7 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg(2+)-dependent 5' maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme. | |||
Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions.,Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP J Mol Biol. 2009 Nov 13;393(5):1043-55. Epub 2009 Sep 3. PMID:19733182<ref>PMID:19733182</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2ki7" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[Ribonuclease 3D structures|Ribonuclease 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Pyrococcus furiosus DSM 3638]] | |||
[[Category: Foster MP]] | |||
[[Category: Xu Y]] |