1hbb: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1hbb.gif|left|200px]]<br />
<applet load="1hbb" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1hbb, resolution 1.9&Aring;" />
'''HIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITE'''<br />


==Overview==
==HIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITE==
The mutation site in hemoglobin Rothschild (37 beta Trp----Arg) is located, in the "hinge region" of the alpha 1 beta 2 interface, a region that is, critical for normal hemoglobin function. The mutation results in greatly, reduced cooperativity and an oxygen affinity similar to that of hemoglobin, A [Gacon, G., Belkhodja, O., Wajcman, H., &amp; Labie, D. (1977) FEBS Lett., 82, 243-246]. Crystal were grown under "low-salt" conditions [100 mM Cl-, in 10 mM phosphate buffer at pH 7.0 with poly(ethylene glycol) as a, precipitating agent]. The crystal structure of deoxyhemoglobin Rothschild, and the isomorphous crystal structure of deoxyhemoglobin A were refined at, resolutions of 2.0 and 1.9 A, respectively. The mutation-induced, structural changes were partitioned into components of (1) tetramer, rotation, (2) quaternary structure rearrangement, and (3) deformations of, tertiary structure. The quaternary change involves a 1 degree rotation of, the alpha subunit about the "switch region" of the alpha 1 beta 2, interface. The tertiary changes are confined to residues at the alpha 1, beta 2 interface, with the largest shifts (approximately 0.4 A) located, across the interface from the mutation site at the alpha subunit FG, corner-G helix boundary. Most surprising was the identification of a, mutation-generated anion-binding site in the alpha 1 beta 2 interface., Chloride binds at this site as a counterion for Arg 37 beta. The, requirement of a counterion implies that the solution properties of, hemoglobin Rothschild, in particular the dimer-tetramer equilibrium, should be very dependent upon the concentration and type of anions, present.
<StructureSection load='1hbb' size='340' side='right'caption='[[1hbb]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1hbb]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HBB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HBB FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hbb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hbb OCA], [https://pdbe.org/1hbb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hbb RCSB], [https://www.ebi.ac.uk/pdbsum/1hbb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hbb ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:[https://omim.org/entry/140700 140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.<ref>PMID:2833478</ref>  Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:[https://omim.org/entry/604131 604131]. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers.  Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders.  Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:[https://omim.org/entry/613978 613978]. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.<ref>PMID:10569720</ref>
== Function ==
[https://www.uniprot.org/uniprot/HBA_HUMAN HBA_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hb/1hbb_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hbb ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The mutation site in hemoglobin Rothschild (37 beta Trp----Arg) is located in the "hinge region" of the alpha 1 beta 2 interface, a region that is critical for normal hemoglobin function. The mutation results in greatly reduced cooperativity and an oxygen affinity similar to that of hemoglobin A [Gacon, G., Belkhodja, O., Wajcman, H., &amp; Labie, D. (1977) FEBS Lett. 82, 243-246]. Crystal were grown under "low-salt" conditions [100 mM Cl- in 10 mM phosphate buffer at pH 7.0 with poly(ethylene glycol) as a precipitating agent]. The crystal structure of deoxyhemoglobin Rothschild and the isomorphous crystal structure of deoxyhemoglobin A were refined at resolutions of 2.0 and 1.9 A, respectively. The mutation-induced structural changes were partitioned into components of (1) tetramer rotation, (2) quaternary structure rearrangement, and (3) deformations of tertiary structure. The quaternary change involves a 1 degree rotation of the alpha subunit about the "switch region" of the alpha 1 beta 2 interface. The tertiary changes are confined to residues at the alpha 1 beta 2 interface, with the largest shifts (approximately 0.4 A) located across the interface from the mutation site at the alpha subunit FG corner-G helix boundary. Most surprising was the identification of a mutation-generated anion-binding site in the alpha 1 beta 2 interface. Chloride binds at this site as a counterion for Arg 37 beta. The requirement of a counterion implies that the solution properties of hemoglobin Rothschild, in particular the dimer-tetramer equilibrium, should be very dependent upon the concentration and type of anions present.


==Disease==
High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site.,Kavanaugh JS, Rogers PH, Case DA, Arnone A Biochemistry. 1992 Apr 28;31(16):4111-21. PMID:1567857<ref>PMID:1567857</ref>
Known diseases associated with this structure: Erythremias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Erythremias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Erythrocytosis OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], HPFH, deletion type OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Heinz body anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Heinz body anemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Heinz body anemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Hemoglobin H disease OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Hypochromic microcytic anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Methemoglobinemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Methemoglobinemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Sickle cell anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemia, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Thalassemia-beta, dominant inclusion-body OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Thalassemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]]


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
1HBB is a [http://en.wikipedia.org/wiki/Protein_complex Protein complex] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] with HEM as [http://en.wikipedia.org/wiki/ligand ligand]. Full crystallographic information is available from [http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1HBB OCA].
</div>
<div class="pdbe-citations 1hbb" style="background-color:#fffaf0;"></div>


==Reference==
==See Also==
High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site., Kavanaugh JS, Rogers PH, Case DA, Arnone A, Biochemistry. 1992 Apr 28;31(16):4111-21. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=1567857 1567857]
*[[Hemoglobin 3D structures|Hemoglobin 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein complex]]
[[Category: Large Structures]]
[[Category: Arnone, A.]]
[[Category: Arnone A]]
[[Category: Kavanaugh, J.S.]]
[[Category: Kavanaugh JS]]
[[Category: HEM]]
[[Category: oxygen transport]]
 
''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Mon Nov 12 17:15:17 2007''

Latest revision as of 11:31, 22 May 2024

HIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITEHIGH-RESOLUTION X-RAY STUDY OF DEOXYHEMOGLOBIN ROTHSCHILD 37BETA TRP-> ARG: A MUTATION THAT CREATES AN INTERSUBUNIT CHLORIDE-BINDING SITE

Structural highlights

1hbb is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

HBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2]

Function

HBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The mutation site in hemoglobin Rothschild (37 beta Trp----Arg) is located in the "hinge region" of the alpha 1 beta 2 interface, a region that is critical for normal hemoglobin function. The mutation results in greatly reduced cooperativity and an oxygen affinity similar to that of hemoglobin A [Gacon, G., Belkhodja, O., Wajcman, H., & Labie, D. (1977) FEBS Lett. 82, 243-246]. Crystal were grown under "low-salt" conditions [100 mM Cl- in 10 mM phosphate buffer at pH 7.0 with poly(ethylene glycol) as a precipitating agent]. The crystal structure of deoxyhemoglobin Rothschild and the isomorphous crystal structure of deoxyhemoglobin A were refined at resolutions of 2.0 and 1.9 A, respectively. The mutation-induced structural changes were partitioned into components of (1) tetramer rotation, (2) quaternary structure rearrangement, and (3) deformations of tertiary structure. The quaternary change involves a 1 degree rotation of the alpha subunit about the "switch region" of the alpha 1 beta 2 interface. The tertiary changes are confined to residues at the alpha 1 beta 2 interface, with the largest shifts (approximately 0.4 A) located across the interface from the mutation site at the alpha subunit FG corner-G helix boundary. Most surprising was the identification of a mutation-generated anion-binding site in the alpha 1 beta 2 interface. Chloride binds at this site as a counterion for Arg 37 beta. The requirement of a counterion implies that the solution properties of hemoglobin Rothschild, in particular the dimer-tetramer equilibrium, should be very dependent upon the concentration and type of anions present.

High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site.,Kavanaugh JS, Rogers PH, Case DA, Arnone A Biochemistry. 1992 Apr 28;31(16):4111-21. PMID:1567857[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ohba Y, Yamamoto K, Hattori Y, Kawata R, Miyaji T. Hyperunstable hemoglobin Toyama [alpha 2 136(H19)Leu----Arg beta 2]: detection and identification by in vitro biosynthesis with radioactive amino acids. Hemoglobin. 1987;11(6):539-56. PMID:2833478
  2. Traeger-Synodinos J, Harteveld CL, Kanavakis E, Giordano PC, Kattamis C, Bernini LF. Hb Aghia Sophia [alpha62(E11)Val-->0 (alpha1)], an "in-frame" deletion causing alpha-thalassemia. Hemoglobin. 1999 Nov;23(4):317-24. PMID:10569720
  3. Kavanaugh JS, Rogers PH, Case DA, Arnone A. High-resolution X-ray study of deoxyhemoglobin Rothschild 37 beta Trp----Arg: a mutation that creates an intersubunit chloride-binding site. Biochemistry. 1992 Apr 28;31(16):4111-21. PMID:1567857

1hbb, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA