1bnp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1bnp.png|left|200px]]


<!--
==NMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, 55 STRUCTURES==
The line below this paragraph, containing "STRUCTURE_1bnp", creates the "Structure Box" on the page.
<StructureSection load='1bnp' size='340' side='right'caption='[[1bnp]]' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)  
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1bnp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BNP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BNP FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bnp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bnp OCA], [https://pdbe.org/1bnp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bnp RCSB], [https://www.ebi.ac.uk/pdbsum/1bnp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bnp ProSAT]</span></td></tr>
{{STRUCTURE_1bnp|  PDB=1bnp  |  SCENE=  }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/DPOLB_RAT DPOLB_RAT] Repair polymerase that plays a key role in base-excision repair. Has 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity that removes the 5' sugar phosphate and also acts as a DNA polymerase that adds one nucleotide to the 3' end of the arising single-nucleotide gap. Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bn/1bnp_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bnp ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
DNA polymerase beta (beta-Pol) consists of an N-terminal ssDNA binding domain with deoxyribose phosphodiesterase activity and a C-terminal domain with nucleotidyltransferase activity. The solution structure of the cloned N-terminal domain of beta-Pol has been determined by multidimensional heteronuclear NMR using experimental restraints that included 1030 distances based on analysis of NOE connectivities, 68 phi, chi 1, and chi 2 torsion angles based on analysis of couplings, and 22 hydrogen bonds. Hydrogen bonds were assessed only within helices by the absence of saturation transfer from water at pH 6.7, by NOEs and JNH alpha couplings indicative of well-structured helices, and by 13C alpha chemical shifts characteristic of helices. The root mean square deviation for heavy backbone atoms within the helices was 0.64 A in 55 structures. The solution structure of the N-terminal domain is formed from four helices packed as two antiparallel pairs crossing at 50 degrees in a V-like shape. The domain binds p(dT)8, a template analogue, as a 1:1 complex in 100 mM NaCl (KD = 10 microM). Analysis of the binding equilibria at increasing NaCl concentrations indicated that ionic contacts contribute to the complex. The binding interaction was mapped to one face of the domain by characterizing backbone 1H and 15N chemical shift changes. Assigned intermolecular NOEs from 2D NOESY support the assessment of the binding interface. The structure that forms the interaction surface includes an antiparallel helix-3-turn-helix-4 motif and residues adjacent to an omega-type loop connecting helix-1 and helix-2. Sites appropriate for nucleotide contact on the structure are described. The mapped interaction interface for a ssDNA template is the first described for a DNA polymerase.


===NMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, 55 STRUCTURES===
Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface.,Liu D, Prasad R, Wilson SH, DeRose EF, Mullen GP Biochemistry. 1996 May 21;35(20):6188-200. PMID:8639559<ref>PMID:8639559</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1bnp" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_8639559}}, adds the Publication Abstract to the page
*[[DNA polymerase 3D structures|DNA polymerase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 8639559 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_8639559}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1BNP is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BNP OCA].
 
==Reference==
<ref group="xtra">PMID:8639559</ref><references group="xtra"/>
[[Category: DNA-directed DNA polymerase]]
[[Category: Rattus norvegicus]]
[[Category: Rattus norvegicus]]
[[Category: Derose, E F.]]
[[Category: Derose EF]]
[[Category: Liu, D J.]]
[[Category: Liu D-J]]
[[Category: Mullen, G P.]]
[[Category: Mullen GP]]
[[Category: Prasad, R.]]
[[Category: Prasad R]]
[[Category: Wilson, S H.]]
[[Category: Wilson SH]]
[[Category: Dna polymerase beta]]
[[Category: N-terminal domain]]
[[Category: Nucleotidyltransferase]]
[[Category: Single-stranded dna-binding]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 19:11:02 2009''

Latest revision as of 11:19, 22 May 2024

NMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, 55 STRUCTURESNMR SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF DNA POLYMERASE BETA, 55 STRUCTURES

Structural highlights

1bnp is a 1 chain structure with sequence from Rattus norvegicus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPOLB_RAT Repair polymerase that plays a key role in base-excision repair. Has 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity that removes the 5' sugar phosphate and also acts as a DNA polymerase that adds one nucleotide to the 3' end of the arising single-nucleotide gap. Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

DNA polymerase beta (beta-Pol) consists of an N-terminal ssDNA binding domain with deoxyribose phosphodiesterase activity and a C-terminal domain with nucleotidyltransferase activity. The solution structure of the cloned N-terminal domain of beta-Pol has been determined by multidimensional heteronuclear NMR using experimental restraints that included 1030 distances based on analysis of NOE connectivities, 68 phi, chi 1, and chi 2 torsion angles based on analysis of couplings, and 22 hydrogen bonds. Hydrogen bonds were assessed only within helices by the absence of saturation transfer from water at pH 6.7, by NOEs and JNH alpha couplings indicative of well-structured helices, and by 13C alpha chemical shifts characteristic of helices. The root mean square deviation for heavy backbone atoms within the helices was 0.64 A in 55 structures. The solution structure of the N-terminal domain is formed from four helices packed as two antiparallel pairs crossing at 50 degrees in a V-like shape. The domain binds p(dT)8, a template analogue, as a 1:1 complex in 100 mM NaCl (KD = 10 microM). Analysis of the binding equilibria at increasing NaCl concentrations indicated that ionic contacts contribute to the complex. The binding interaction was mapped to one face of the domain by characterizing backbone 1H and 15N chemical shift changes. Assigned intermolecular NOEs from 2D NOESY support the assessment of the binding interface. The structure that forms the interaction surface includes an antiparallel helix-3-turn-helix-4 motif and residues adjacent to an omega-type loop connecting helix-1 and helix-2. Sites appropriate for nucleotide contact on the structure are described. The mapped interaction interface for a ssDNA template is the first described for a DNA polymerase.

Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface.,Liu D, Prasad R, Wilson SH, DeRose EF, Mullen GP Biochemistry. 1996 May 21;35(20):6188-200. PMID:8639559[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Liu D, Prasad R, Wilson SH, DeRose EF, Mullen GP. Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface. Biochemistry. 1996 May 21;35(20):6188-200. PMID:8639559 doi:10.1021/bi952656o
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA