1bbl: Difference between revisions

No edit summary
No edit summary
 
Line 19: Line 19:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bbl ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1bbl ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional solution structure of a 51-residue synthetic peptide comprising the dihydrolipoamide dehydrogenase (E3)-binding domain of the dihydrolipoamide succinyltransferase (E2) core of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli has been determined by nuclear magnetic resonance spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure is based on 630 approximate interproton distance and 101 torsion angle (phi, psi, chi 1) restraints. A total of 56 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions for residues 12-48 of the synthetic peptide is 1.24 A for the backbone atoms, 1.68 A for all atoms, and 1.33 A for all atoms excluding the six side chains which are disordered at chi 1 and the seven which are disordered at chi 2; when the irregular partially disordered loop from residues 31 to 39 is excluded, the rms distribution drops to 0.77 A for the backbone atoms, 1.55 A for all atoms, and 0.89 A for ordered side chains. Although proton resonance assignments for the N-terminal 11 residues and the C-terminal 3 residues were obtained, these two segments of the polypeptide are disordered in solution as evidenced by the absence of nonsequential nuclear Overhauser effects. The solution structure of the E3-binding domain consists of two parallel helices (residues 14-23 and 40-48), a short extended strand (24-26), a five-residue helical-like turn, and an irregular (and more disordered) loop (residues 31-39). This report presents the first structure of an E3-binding domain from a 2-oxo acid dehydrogenase complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli.,Robien MA, Clore GM, Omichinski JG, Perham RN, Appella E, Sakaguchi K, Gronenborn AM Biochemistry. 1992 Apr 7;31(13):3463-71. PMID:1554728<ref>PMID:1554728</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1bbl" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[2-oxoglutarate dehydrogenase 3D structures|2-oxoglutarate dehydrogenase 3D structures]]
*[[2-oxoglutarate dehydrogenase 3D structures|2-oxoglutarate dehydrogenase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA