1a91: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:1a91.png|left|200px]]


<!--
==SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURES==
The line below this paragraph, containing "STRUCTURE_1a91", creates the "Structure Box" on the page.
<StructureSection load='1a91' size='340' side='right'caption='[[1a91]]' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1a91]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A91 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A91 FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a91 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a91 OCA], [https://pdbe.org/1a91 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a91 RCSB], [https://www.ebi.ac.uk/pdbsum/1a91 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a91 ProSAT]</span></td></tr>
{{STRUCTURE_1a91|  PDB=1a91  |  SCENE=  }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/ATPL_ECOLI ATPL_ECOLI] F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01396]  Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of 10 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits.[HAMAP-Rule:MF_01396]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a9/1a91_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1a91 ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Subunit c is the H+-translocating component of the F1F0 ATP synthase complex. H+ transport is coupled to conformational changes that ultimately lead to ATP synthesis by the enzyme. The properties of the monomeric subunit in a single-phase solution of chloroform-methanol-water (4:4:1) have been shown to mimic those of the protein in the native complex. Triple resonance NMR experiments were used to determine the complete structure of monomeric subunit c in this solvent mixture. The structure of the protein was defined by &gt;2000 interproton distances, 64 (3)JN alpha, and 43 hydrogen-bonding NMR-derived restraints. The root mean squared deviation for the backbone atoms of the two transmembrane helices was 0.63 A. The protein folds as a hairpin of two antiparallel helical segments, connected by a short structured loop. The conserved Arg41-Gln42-Pro43 form the top of this loop. The essential H+-transporting Asp61 residue is located at a slight break in the middle of the C-terminal helix, just prior to Pro64. The C-terminal helix changes direction by 30 +/- 5 degrees at the conserved Pro64. In its protonated form, the Asp61 lies in a cavity created by the absence of side chains at Gly23 and Gly27 in the N-terminal helix. The shape and charge distribution of the molecular surface of the monomeric protein suggest a packing arrangement for the oligomeric protein in the F0 complex, with the front face of one monomer packing favorably against the back face of a second monomer. The packing suggests that the proton (cation) binding site lies between packed pairs of adjacent subunit c.


===SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURES===
Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase.,Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH Biochemistry. 1998 Jun 23;37(25):8817-24. PMID:9636021<ref>PMID:9636021</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1a91" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_9636021}}, adds the Publication Abstract to the page
*[[ATPase 3D structures|ATPase 3D structures]]
(as it appears on PubMed at http://www.pubmed.gov), where 9636021 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_9636021}}
__TOC__
 
</StructureSection>
==About this Structure==
1A91 is a 1 chain structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A91 OCA].
 
==Reference==
<ref group="xtra">PMID:9636021</ref><references group="xtra"/>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Abildgaard, F.]]
[[Category: Large Structures]]
[[Category: Fillingame, R H.]]
[[Category: Abildgaard F]]
[[Category: Girvin, M E.]]
[[Category: Fillingame RH]]
[[Category: Markley, J L.]]
[[Category: Girvin ME]]
[[Category: Rastogi, V K.]]
[[Category: Markley JL]]
[[Category: Hydrogen ion transport]]
[[Category: Rastogi VK]]
[[Category: Membrane protein]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Wed Feb 18 09:46:43 2009''

Latest revision as of 11:12, 22 May 2024

SUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURESSUBUNIT C OF THE F1FO ATP SYNTHASE OF ESCHERICHIA COLI; NMR, 10 STRUCTURES

Structural highlights

1a91 is a 1 chain structure with sequence from Escherichia coli. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ATPL_ECOLI F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.[HAMAP-Rule:MF_01396] Key component of the F(0) channel; it plays a direct role in translocation across the membrane. A homomeric c-ring of 10 subunits forms the central stalk rotor element with the F(1) delta and epsilon subunits.[HAMAP-Rule:MF_01396]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Subunit c is the H+-translocating component of the F1F0 ATP synthase complex. H+ transport is coupled to conformational changes that ultimately lead to ATP synthesis by the enzyme. The properties of the monomeric subunit in a single-phase solution of chloroform-methanol-water (4:4:1) have been shown to mimic those of the protein in the native complex. Triple resonance NMR experiments were used to determine the complete structure of monomeric subunit c in this solvent mixture. The structure of the protein was defined by >2000 interproton distances, 64 (3)JN alpha, and 43 hydrogen-bonding NMR-derived restraints. The root mean squared deviation for the backbone atoms of the two transmembrane helices was 0.63 A. The protein folds as a hairpin of two antiparallel helical segments, connected by a short structured loop. The conserved Arg41-Gln42-Pro43 form the top of this loop. The essential H+-transporting Asp61 residue is located at a slight break in the middle of the C-terminal helix, just prior to Pro64. The C-terminal helix changes direction by 30 +/- 5 degrees at the conserved Pro64. In its protonated form, the Asp61 lies in a cavity created by the absence of side chains at Gly23 and Gly27 in the N-terminal helix. The shape and charge distribution of the molecular surface of the monomeric protein suggest a packing arrangement for the oligomeric protein in the F0 complex, with the front face of one monomer packing favorably against the back face of a second monomer. The packing suggests that the proton (cation) binding site lies between packed pairs of adjacent subunit c.

Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase.,Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH Biochemistry. 1998 Jun 23;37(25):8817-24. PMID:9636021[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Girvin ME, Rastogi VK, Abildgaard F, Markley JL, Fillingame RH. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry. 1998 Jun 23;37(25):8817-24. PMID:9636021 doi:10.1021/bi980511m
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA