2a90: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==Crystal Structure of the tandem WWE domain of Drosophila Deltex== | ||
<StructureSection load='2a90' size='340' side='right'caption='[[2a90]], [[Resolution|resolution]] 2.15Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2a90]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A90 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A90 FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a90 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a90 OCA], [https://pdbe.org/2a90 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a90 RCSB], [https://www.ebi.ac.uk/pdbsum/2a90 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a90 ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/DTX_DROME DTX_DROME] Regulator of Notch signaling, a signaling pathway involved in cell-cell communications that regulates a broad spectrum of cell-fate determinations. Mainly acts as a positive regulator of Notch, but it may also act as a negative regulator, depending on the developmental and cell context. Mediates the antineural activity of Notch. May function as a ubiquitin ligase protein in the Notch pathway.<ref>PMID:7671825</ref> <ref>PMID:11719214</ref> <ref>PMID:11861487</ref> | |||
== Evolutionary Conservation == | |||
== | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a9/2a90_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a90 ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination. | Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination. | ||
Structure and Notch receptor binding of the tandem WWE domain of Deltex.,Zweifel ME, Leahy DJ, Barrick D Structure. 2005 Nov;13(11):1599-611. PMID:16271883<ref>PMID:16271883</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2a90" style="background-color:#fffaf0;"></div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Drosophila melanogaster]] | [[Category: Drosophila melanogaster]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Barrick | [[Category: Barrick D]] | ||
[[Category: Leahy | [[Category: Leahy DJ]] | ||
[[Category: Zweifel | [[Category: Zweifel ME]] | ||
Latest revision as of 11:16, 15 May 2024
Crystal Structure of the tandem WWE domain of Drosophila DeltexCrystal Structure of the tandem WWE domain of Drosophila Deltex
Structural highlights
FunctionDTX_DROME Regulator of Notch signaling, a signaling pathway involved in cell-cell communications that regulates a broad spectrum of cell-fate determinations. Mainly acts as a positive regulator of Notch, but it may also act as a negative regulator, depending on the developmental and cell context. Mediates the antineural activity of Notch. May function as a ubiquitin ligase protein in the Notch pathway.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedDeltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal to the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination. Structure and Notch receptor binding of the tandem WWE domain of Deltex.,Zweifel ME, Leahy DJ, Barrick D Structure. 2005 Nov;13(11):1599-611. PMID:16271883[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|