1zed: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Alkaline phosphatase from human placenta in complex with p-nitrophenyl-phosphonate== | |||
<StructureSection load='1zed' size='340' side='right'caption='[[1zed]], [[Resolution|resolution]] 1.57Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1zed]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZED OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ZED FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.57Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PNP:METHYL-PHOSPHONIC+ACID+MONO-(4-NITRO-PHENYL)+ESTER'>PNP</scene>, <scene name='pdbligand=PO3:PHOSPHITE+ION'>PO3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1zed FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zed OCA], [https://pdbe.org/1zed PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1zed RCSB], [https://www.ebi.ac.uk/pdbsum/1zed PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1zed ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/PPB1_HUMAN PPB1_HUMAN] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ze/1zed_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1zed ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The activity of human placental alkaline phosphatase (PLAP) is downregulated by a number of effectors such as l-phenylalanine, an uncompetitive inhibitor, 5'-AMP, an antagonist of the effects of PLAP on fibroblast proliferation and by p-nitrophenyl-phosphonate (PNPPate), a non-hydrolysable substrate analogue. For the first two, such regulation may be linked to its biological function that requires a reduced and better-regulated hydrolytic rate. To understand how such disparate ligands are able to inhibit the enzyme, we solved the structure of the complexes at 1.6A, 1.9A and 1.9A resolution, respectively. These crystal structures are the first of an alkaline phosphatase in complex with organic inhibitors. Of the three inhibitors, only l-Phe and PNPPate bind at the active site hydrophobic pocket, providing structural data on the uncompetitive inhibition process. In contrast, all three ligands interact at a remote peripheral site located 28A from the active site. In order to extend these observations to the other members of the human alkaline phosphatase family, we have modelled the structures of the other human isozymes and compared them to PLAP. This comparison highlights the crucial role played by position 429 at the active site in the modulation of the catalytic process, and suggests that the peripheral binding site may be involved in the functional specialization of the PLAP isozyme. | |||
Structural studies of human placental alkaline phosphatase in complex with functional ligands.,Llinas P, Stura EA, Menez A, Kiss Z, Stigbrand T, Millan JL, Le Du MH J Mol Biol. 2005 Jul 15;350(3):441-51. PMID:15946677<ref>PMID:15946677</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 1zed" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[Alkaline phosphatase|Alkaline phosphatase]] | *[[Alkaline phosphatase 3D structures|Alkaline phosphatase 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Kiss | [[Category: Kiss Z]] | ||
[[Category: Llinas | [[Category: Le Du MH]] | ||
[[Category: Menez | [[Category: Llinas P]] | ||
[[Category: Millan | [[Category: Menez A]] | ||
[[Category: Stigbrand | [[Category: Millan JL]] | ||
[[Category: Stura | [[Category: Stigbrand T]] | ||
[[Category: Stura EA]] | |||
Latest revision as of 11:10, 15 May 2024
Alkaline phosphatase from human placenta in complex with p-nitrophenyl-phosphonateAlkaline phosphatase from human placenta in complex with p-nitrophenyl-phosphonate
Structural highlights
FunctionEvolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe activity of human placental alkaline phosphatase (PLAP) is downregulated by a number of effectors such as l-phenylalanine, an uncompetitive inhibitor, 5'-AMP, an antagonist of the effects of PLAP on fibroblast proliferation and by p-nitrophenyl-phosphonate (PNPPate), a non-hydrolysable substrate analogue. For the first two, such regulation may be linked to its biological function that requires a reduced and better-regulated hydrolytic rate. To understand how such disparate ligands are able to inhibit the enzyme, we solved the structure of the complexes at 1.6A, 1.9A and 1.9A resolution, respectively. These crystal structures are the first of an alkaline phosphatase in complex with organic inhibitors. Of the three inhibitors, only l-Phe and PNPPate bind at the active site hydrophobic pocket, providing structural data on the uncompetitive inhibition process. In contrast, all three ligands interact at a remote peripheral site located 28A from the active site. In order to extend these observations to the other members of the human alkaline phosphatase family, we have modelled the structures of the other human isozymes and compared them to PLAP. This comparison highlights the crucial role played by position 429 at the active site in the modulation of the catalytic process, and suggests that the peripheral binding site may be involved in the functional specialization of the PLAP isozyme. Structural studies of human placental alkaline phosphatase in complex with functional ligands.,Llinas P, Stura EA, Menez A, Kiss Z, Stigbrand T, Millan JL, Le Du MH J Mol Biol. 2005 Jul 15;350(3):441-51. PMID:15946677[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|