2mow: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Structure of Nrd1p CID - Trf4p NIM complex==
==Structure of Nrd1p CID - Trf4p NIM complex==
<StructureSection load='2mow' size='340' side='right'caption='[[2mow]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='2mow' size='340' side='right'caption='[[2mow]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2mow]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MOW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2MOW FirstGlance]. <br>
<table><tr><td colspan='2'>[[2mow]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MOW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2MOW FirstGlance]. <br>
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NRD1, YNL251C, N0868 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 ATCC 18824])</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2mow FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mow OCA], [https://pdbe.org/2mow PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2mow RCSB], [https://www.ebi.ac.uk/pdbsum/2mow PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2mow ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2mow FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mow OCA], [https://pdbe.org/2mow PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2mow RCSB], [https://www.ebi.ac.uk/pdbsum/2mow PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2mow ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[https://www.uniprot.org/uniprot/NRD1_YEAST NRD1_YEAST]] Plays a role in sequence-specific regulation of nuclear pre-mRNA abundance. [[https://www.uniprot.org/uniprot/PAP2_YEAST PAP2_YEAST]] Catalytic subunit of the TRAMP complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism limiting inappropriate expression of genetic information. Polyadenylation is required for the degradative activity of the exosome on several of its nuclear RNA substrates like cryptic transcripts generated by RNA polymerase II and III, or hypomethylated pre-tRNAi-Met. Polyadenylates RNA processing and degradation intermediates of snRNAs, snoRNAs and mRNAs that accumulate in strains lacking a functional exosome. TRF4 is also required for proper nuclear division in mitosis, DNA damage repair and sister chromatid cohesion. Involved in the regulation of histone mRNA levels. May mediate mitotic chromosome condensation.<ref>PMID:8647385</ref> <ref>PMID:8895658</ref> <ref>PMID:8710513</ref> <ref>PMID:10066793</ref> <ref>PMID:10926539</ref> <ref>PMID:12062100</ref> <ref>PMID:11861546</ref> <ref>PMID:12665575</ref> <ref>PMID:15145828</ref> <ref>PMID:15935758</ref> <ref>PMID:15935759</ref> <ref>PMID:16260630</ref> <ref>PMID:15828860</ref> <ref>PMID:16373491</ref> <ref>PMID:16431988</ref> <ref>PMID:17179095</ref> <ref>PMID:20696927</ref> 
[https://www.uniprot.org/uniprot/NRD1_YEAST NRD1_YEAST] Plays a role in sequence-specific regulation of nuclear pre-mRNA abundance.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 22: Line 22:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Atcc 18824]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Kabzinski, T]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Kubicek, K]]
[[Category: Kabzinski T]]
[[Category: Stefl, R]]
[[Category: Kubicek K]]
[[Category: Protein-protein interaction]]
[[Category: Stefl R]]
[[Category: Rna degradation]]
[[Category: Rnap ii ctd]]
[[Category: Transcription]]
[[Category: Transcription termination]]

Latest revision as of 09:08, 15 May 2024

Structure of Nrd1p CID - Trf4p NIM complexStructure of Nrd1p CID - Trf4p NIM complex

Structural highlights

2mow is a 2 chain structure with sequence from Saccharomyces cerevisiae. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NRD1_YEAST Plays a role in sequence-specific regulation of nuclear pre-mRNA abundance.

Publication Abstract from PubMed

The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.

Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation.,Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, Libri D Mol Cell. 2014 Aug 7;55(3):467-481. doi: 10.1016/j.molcel.2014.05.031. Epub 2014 , Jul 24. PMID:25066235[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, Libri D. Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation. Mol Cell. 2014 Aug 7;55(3):467-481. doi: 10.1016/j.molcel.2014.05.031. Epub 2014 , Jul 24. PMID:25066235 doi:http://dx.doi.org/10.1016/j.molcel.2014.05.031
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA