1wbj: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1wbj.gif|left|200px]]<br />
<applet load="1wbj" size="450" color="white" frame="true" align="right" spinBox="true"
caption="1wbj, resolution 1.50&Aring;" />
'''WILDTYPE TRYPTOPHAN SYNTHASE COMPLEXED WITH GLYCEROL PHOSPHATE'''<br />


==Overview==
==wildtype tryptophan synthase complexed with glycerol phosphate==
Indole is a reaction intermediate in at least two biosynthetic pathways in, maize seedlings. In the primary metabolism, the alpha-subunit (TSA) of the, bifunctional tryptophan synthase (TRPS) catalyzes the cleavage of indole, 3-glycerol phosphate (IGP) to indole and d-glyceraldehyde 3-phosphate, (G3P). Subsequently, indole diffuses through the connecting tunnel to the, beta-active site where it is condensed with serine to form tryptophan and, water. The maize enzyme, BX1, a homolog of TSA, also cleaves IGP to G3P, and indole, and the indole is further converted to, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a secondary plant, metabolite. BX1 cleaves IGP significantly faster to G3P and indole than, does TSA. In line with their different biological functions, these two, ... [[http://ispc.weizmann.ac.il/pmbin/getpm?16120446 (full description)]]
<StructureSection load='1wbj' size='340' side='right'caption='[[1wbj]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1wbj]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Salmonella_enterica_subsp._enterica_serovar_Typhimurium Salmonella enterica subsp. enterica serovar Typhimurium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1WBJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1WBJ FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G3P:SN-GLYCEROL-3-PHOSPHATE'>G3P</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1wbj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1wbj OCA], [https://pdbe.org/1wbj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1wbj RCSB], [https://www.ebi.ac.uk/pdbsum/1wbj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1wbj ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/TRPA_SALTY TRPA_SALTY] The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wb/1wbj_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1wbj ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Indole is a reaction intermediate in at least two biosynthetic pathways in maize seedlings. In the primary metabolism, the alpha-subunit (TSA) of the bifunctional tryptophan synthase (TRPS) catalyzes the cleavage of indole 3-glycerol phosphate (IGP) to indole and d-glyceraldehyde 3-phosphate (G3P). Subsequently, indole diffuses through the connecting tunnel to the beta-active site where it is condensed with serine to form tryptophan and water. The maize enzyme, BX1, a homolog of TSA, also cleaves IGP to G3P and indole, and the indole is further converted to 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a secondary plant metabolite. BX1 cleaves IGP significantly faster to G3P and indole than does TSA. In line with their different biological functions, these two evolutionary related enzymes differ significantly in their regulatory aspects while catalyzing the same chemistry. Here, the mechanism of IGP cleavage by TSA was analyzed using a novel transition state analogue generated in situ by reaction of 2-aminophenol and G3P. The crystal structure of the complex shows an sp3-hybridized atom corresponding to the C3 position of IGP. The catalytic alphaGlu49 rotates to interact with the sp3-hybridized atom and the 3' hydroxyl group suggesting that it serves both as proton donor and acceptor in the alpha-reaction. The second catalytic residue, alphaAsp60 interacts with the atom corresponding to the indolyl nitrogen, and the catalytically important loop alphaL6 is in the closed, high activity conformation. Comparison of the TSA and TSA-transition state analogue structures with the crystal structure of BX1 suggests that the faster catalytic rate of BX1 may be due to a stabilization of the active conformation: loop alphaL6 is closed and the catalytic glutamate is in the active conformation. The latter is caused by a substitution of the residues that stabilize the inactive conformation in TRPS.


==About this Structure==
On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes.,Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I J Mol Biol. 2005 Sep 23;352(3):608-20. PMID:16120446<ref>PMID:16120446</ref>
1WBJ is a [[http://en.wikipedia.org/wiki/Protein_complex Protein complex]] structure of sequences from [[http://en.wikipedia.org/wiki/Salmonella_typhimurium Salmonella typhimurium]] with NA, G3P and PLP as [[http://en.wikipedia.org/wiki/ligands ligands]]. Active as [[http://en.wikipedia.org/wiki/Tryptophan_synthase Tryptophan synthase]], with EC number [[http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.20 4.2.1.20]]. Structure known Active Site: AC1. Full crystallographic information is available from [[http://ispc.weizmann.ac.il/oca-bin/ocashort?id=1WBJ OCA]].


==Reference==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes., Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I, J Mol Biol. 2005 Sep 23;352(3):608-20. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=16120446 16120446]
</div>
[[Category: Protein complex]]
<div class="pdbe-citations 1wbj" style="background-color:#fffaf0;"></div>
[[Category: Salmonella typhimurium]]
[[Category: Tryptophan synthase]]
[[Category: Kulik, V.]]
[[Category: Schlichting, I.]]
[[Category: Weyand, M.]]
[[Category: G3P]]
[[Category: NA]]
[[Category: PLP]]
[[Category: lyase]]
[[Category: pyridoxal phosphate]]
[[Category: tryptophan biosynthesis]]


''Page seeded by [http://ispc.weizmann.ac.il/oca OCA ] on Tue Oct 30 16:30:47 2007''
==See Also==
*[[Tryptophan synthase|Tryptophan synthase]]
*[[Tryptophan synthase 3D structures|Tryptophan synthase 3D structures]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Large Structures]]
[[Category: Salmonella enterica subsp. enterica serovar Typhimurium]]
[[Category: Kulik V]]
[[Category: Schlichting I]]
[[Category: Weyand M]]

Latest revision as of 16:33, 9 May 2024

wildtype tryptophan synthase complexed with glycerol phosphatewildtype tryptophan synthase complexed with glycerol phosphate

Structural highlights

1wbj is a 2 chain structure with sequence from Salmonella enterica subsp. enterica serovar Typhimurium. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TRPA_SALTY The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Indole is a reaction intermediate in at least two biosynthetic pathways in maize seedlings. In the primary metabolism, the alpha-subunit (TSA) of the bifunctional tryptophan synthase (TRPS) catalyzes the cleavage of indole 3-glycerol phosphate (IGP) to indole and d-glyceraldehyde 3-phosphate (G3P). Subsequently, indole diffuses through the connecting tunnel to the beta-active site where it is condensed with serine to form tryptophan and water. The maize enzyme, BX1, a homolog of TSA, also cleaves IGP to G3P and indole, and the indole is further converted to 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, a secondary plant metabolite. BX1 cleaves IGP significantly faster to G3P and indole than does TSA. In line with their different biological functions, these two evolutionary related enzymes differ significantly in their regulatory aspects while catalyzing the same chemistry. Here, the mechanism of IGP cleavage by TSA was analyzed using a novel transition state analogue generated in situ by reaction of 2-aminophenol and G3P. The crystal structure of the complex shows an sp3-hybridized atom corresponding to the C3 position of IGP. The catalytic alphaGlu49 rotates to interact with the sp3-hybridized atom and the 3' hydroxyl group suggesting that it serves both as proton donor and acceptor in the alpha-reaction. The second catalytic residue, alphaAsp60 interacts with the atom corresponding to the indolyl nitrogen, and the catalytically important loop alphaL6 is in the closed, high activity conformation. Comparison of the TSA and TSA-transition state analogue structures with the crystal structure of BX1 suggests that the faster catalytic rate of BX1 may be due to a stabilization of the active conformation: loop alphaL6 is closed and the catalytic glutamate is in the active conformation. The latter is caused by a substitution of the residues that stabilize the inactive conformation in TRPS.

On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes.,Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I J Mol Biol. 2005 Sep 23;352(3):608-20. PMID:16120446[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kulik V, Hartmann E, Weyand M, Frey M, Gierl A, Niks D, Dunn MF, Schlichting I. On the structural basis of the catalytic mechanism and the regulation of the alpha subunit of tryptophan synthase from Salmonella typhimurium and BX1 from maize, two evolutionarily related enzymes. J Mol Biol. 2005 Sep 23;352(3):608-20. PMID:16120446 doi:10.1016/j.jmb.2005.07.014

1wbj, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA