1uwp: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | |||
<StructureSection load='1uwp' size='340' side='right' caption='[[1uwp]], [[Resolution|resolution]] 1.20Å' scene=''> | ==Initial Events in the Photocycle of Photoactive Yellow Protein== | ||
<StructureSection load='1uwp' size='340' side='right'caption='[[1uwp]], [[Resolution|resolution]] 1.20Å' scene=''> | |||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1uwp]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1uwp]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Halorhodospira_halophila Halorhodospira halophila]. The March 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Phototropin'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_3 10.2210/rcsb_pdb/mom_2015_3]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UWP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UWP FirstGlance]. <br> | ||
</td></tr><tr id=' | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.2Å</td></tr> | ||
<tr id=' | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HC4:4-HYDROXYCINNAMIC+ACID'>HC4</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
< | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uwp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uwp OCA], [https://pdbe.org/1uwp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uwp RCSB], [https://www.ebi.ac.uk/pdbsum/1uwp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uwp ProSAT]</span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | |||
</table> | </table> | ||
== Function == | |||
[https://www.uniprot.org/uniprot/PYP_HALHA PYP_HALHA] Photoactive blue light protein. Probably functions as a photoreceptor for a negative phototaxis response. | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uw/1uwp_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uw/1uwp_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uwp ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 26: | Line 28: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | </div> | ||
<div class="pdbe-citations 1uwp" style="background-color:#fffaf0;"></div> | |||
== References == | == References == | ||
<references/> | <references/> | ||
Line 31: | Line 34: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Halorhodospira halophila]] | [[Category: Halorhodospira halophila]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: | [[Category: Phototropin]] | ||
[[Category: | [[Category: RCSB PDB Molecule of the Month]] | ||
[[Category: | [[Category: Hellingwerf KJ]] | ||
[[Category: | [[Category: Kort R]] | ||
[[Category: | [[Category: Ravelli RBG]] | ||
Latest revision as of 16:22, 9 May 2024
Initial Events in the Photocycle of Photoactive Yellow ProteinInitial Events in the Photocycle of Photoactive Yellow Protein
Structural highlights
FunctionPYP_HALHA Photoactive blue light protein. Probably functions as a photoreceptor for a negative phototaxis response. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events. Initial events in the photocycle of photoactive yellow protein.,Kort R, Hellingwerf KJ, Ravelli RB J Biol Chem. 2004 Jun 18;279(25):26417-24. Epub 2004 Mar 16. PMID:15026418[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|