4a3l: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
< | ==RNA Polymerase II initial transcribing complex with a 7nt DNA-RNA hybrid and soaked with AMPCPP== | ||
<StructureSection load='4a3l' size='340' side='right'caption='[[4a3l]], [[Resolution|resolution]] 3.50Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4a3l]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4A3L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4A3L FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.5Å</td></tr> | |||
- | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene>, <scene name='pdbligand=BRU:5-BROMO-2-DEOXYURIDINE-5-MONOPHOSPHATE'>BRU</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4a3l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4a3l OCA], [https://pdbe.org/4a3l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4a3l RCSB], [https://www.ebi.ac.uk/pdbsum/4a3l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4a3l ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/RPB9_YEAST RPB9_YEAST] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template. Involved in the regulation of transcription elongation. Involved in DNA repair of damage in the transcribed strand. Mediates a transcription-coupled repair (TCR) subpathway of nucleotide excision repair (NER).<ref>PMID:12411509</ref> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis. | |||
Structural basis of initial RNA polymerase II transcription.,Cheung AC, Sainsbury S, Cramer P EMBO J. 2011 Nov 4. doi: 10.1038/emboj.2011.396. PMID:22056778<ref>PMID:22056778</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 4a3l" style="background-color:#fffaf0;"></div> | |||
==See Also== | |||
*[[RNA polymerase 3D structures|RNA polymerase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | [[Category: Large Structures]] | ||
[[ | |||
== | |||
< | |||
[[Category: | |||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Cheung | [[Category: Cheung ACM]] | ||
[[Category: Cramer | [[Category: Cramer P]] | ||
[[Category: Sainsbury | [[Category: Sainsbury S]] | ||
Latest revision as of 13:46, 9 May 2024
RNA Polymerase II initial transcribing complex with a 7nt DNA-RNA hybrid and soaked with AMPCPPRNA Polymerase II initial transcribing complex with a 7nt DNA-RNA hybrid and soaked with AMPCPP
Structural highlights
FunctionRPB9_YEAST DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template. Involved in the regulation of transcription elongation. Involved in DNA repair of damage in the transcribed strand. Mediates a transcription-coupled repair (TCR) subpathway of nucleotide excision repair (NER).[1] Publication Abstract from PubMedDuring transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II-DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3'-proximal phosphate of short RNAs. Short DNA-RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2'-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis. Structural basis of initial RNA polymerase II transcription.,Cheung AC, Sainsbury S, Cramer P EMBO J. 2011 Nov 4. doi: 10.1038/emboj.2011.396. PMID:22056778[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|