2wxv: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Structure of CDK2-CYCLIN A with a Pyrazolo(4,3-h) quinazoline-3- carboxamide inhibitor== | |||
<StructureSection load='2wxv' size='340' side='right'caption='[[2wxv]], [[Resolution|resolution]] 2.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2wxv]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2WXV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2WXV FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=WXV:N,1-DIMETHYL-8-{[1-(METHYLSULFONYL)PIPERIDIN-4-YL]AMINO}-1H-PYRAZOLO[4,3-H]QUINAZOLINE-3-CARBOXAMIDE'>WXV</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2wxv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2wxv OCA], [https://pdbe.org/2wxv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2wxv RCSB], [https://www.ebi.ac.uk/pdbsum/2wxv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2wxv ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/wx/2wxv_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2wxv ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Abnormal proliferation mediated by disruption of the mechanisms that keep the cell cycle under control is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDKs) and cyclins (Cy) and inhibiting their activity are regarded as promising antitumor agents to complement the existing therapies. An expansion of pyrazolo[4,3-h]quinazoline chemical class oriented to the development of three points of variability was undertaken leading to a series of compounds able to inhibit CDKs both in vitro and in vivo. Starting from the CDK selective but poorly soluble hit compound 1, we succeeded in obtaining several compounds showing enhanced inhibitory activity both on CDKs and on tumor cells and displaying improved physical properties and pharmacokinetic behavior. Our study led to the identification of compound 59 as a highly potent, orally bioavailable CDK inhibitor that exhibited significant in vivo efficacy on the A2780 ovarian carcinoma xenograft model. The demonstrated mechanisms of action of compound 59 on cancer cell lines and its ability to inhibit tumor growth in vivo render this compound very interesting as potential antineoplastic agent. | |||
Identification of Potent Pyrazolo[4,3-h]quinazoline-3-carboxamides as Multi-Cyclin-Dependent Kinase Inhibitors (dagger).,Traquandi G, Ciomei M, Ballinari D, Casale E, Colombo N, Croci V, Fiorentini F, Isacchi A, Longo A, Mercurio C, Panzeri A, Pastori W, Pevarello P, Volpi D, Roussel P, Vulpetti A, Brasca MG J Med Chem. 2010 Feb 8. PMID:20141146<ref>PMID:20141146</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
<div class="pdbe-citations 2wxv" style="background-color:#fffaf0;"></div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Cyclin 3D structures|Cyclin 3D structures]] | ||
*[[Cyclin|Cyclin]] | *[[Cyclin-dependent kinase 3D structures|Cyclin-dependent kinase 3D structures]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: | [[Category: Large Structures]] | ||
[[Category: Ballinari | [[Category: Ballinari D]] | ||
[[Category: Brasca | [[Category: Brasca MG]] | ||
[[Category: Casale | [[Category: Casale E]] | ||
[[Category: Ciomei | [[Category: Ciomei M]] | ||
[[Category: Colombo | [[Category: Colombo N]] | ||
[[Category: Croci | [[Category: Croci V]] | ||
[[Category: Fiorentini | [[Category: Fiorentini F]] | ||
[[Category: Isacchi | [[Category: Isacchi A]] | ||
[[Category: Longo | [[Category: Longo A]] | ||
[[Category: Mercurio | [[Category: Mercurio C]] | ||
[[Category: Panzeri | [[Category: Panzeri A]] | ||
[[Category: Pastori | [[Category: Pastori W]] | ||
[[Category: Pevarello | [[Category: Pevarello P]] | ||
[[Category: Roussel | [[Category: Roussel P]] | ||
[[Category: Traquandi | [[Category: Traquandi G]] | ||
[[Category: Volpi | [[Category: Volpi D]] | ||
[[Category: Vulpetti | [[Category: Vulpetti A]] | ||
Latest revision as of 13:18, 9 May 2024
Structure of CDK2-CYCLIN A with a Pyrazolo(4,3-h) quinazoline-3- carboxamide inhibitorStructure of CDK2-CYCLIN A with a Pyrazolo(4,3-h) quinazoline-3- carboxamide inhibitor
Structural highlights
FunctionCDK2_HUMAN Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAbnormal proliferation mediated by disruption of the mechanisms that keep the cell cycle under control is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDKs) and cyclins (Cy) and inhibiting their activity are regarded as promising antitumor agents to complement the existing therapies. An expansion of pyrazolo[4,3-h]quinazoline chemical class oriented to the development of three points of variability was undertaken leading to a series of compounds able to inhibit CDKs both in vitro and in vivo. Starting from the CDK selective but poorly soluble hit compound 1, we succeeded in obtaining several compounds showing enhanced inhibitory activity both on CDKs and on tumor cells and displaying improved physical properties and pharmacokinetic behavior. Our study led to the identification of compound 59 as a highly potent, orally bioavailable CDK inhibitor that exhibited significant in vivo efficacy on the A2780 ovarian carcinoma xenograft model. The demonstrated mechanisms of action of compound 59 on cancer cell lines and its ability to inhibit tumor growth in vivo render this compound very interesting as potential antineoplastic agent. Identification of Potent Pyrazolo[4,3-h]quinazoline-3-carboxamides as Multi-Cyclin-Dependent Kinase Inhibitors (dagger).,Traquandi G, Ciomei M, Ballinari D, Casale E, Colombo N, Croci V, Fiorentini F, Isacchi A, Longo A, Mercurio C, Panzeri A, Pastori W, Pevarello P, Volpi D, Roussel P, Vulpetti A, Brasca MG J Med Chem. 2010 Feb 8. PMID:20141146[18] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|