2ixc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Seed}}
[[Image:2ixc.png|left|200px]]


<!--
==RmlC M. tuberculosis with dTDP-rhamnose==
The line below this paragraph, containing "STRUCTURE_2ixc", creates the "Structure Box" on the page.
<StructureSection load='2ixc' size='340' side='right'caption='[[2ixc]], [[Resolution|resolution]] 1.79&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[2ixc]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IXC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2IXC FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.79&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TRH:2-DEOXY-THYMIDINE-BETA-L-RHAMNOSE'>TRH</scene></td></tr>
{{STRUCTURE_2ixc|  PDB=2ixc  |  SCENE=  }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ixc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ixc OCA], [https://pdbe.org/2ixc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ixc RCSB], [https://www.ebi.ac.uk/pdbsum/2ixc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ixc ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RMLC_MYCTU RMLC_MYCTU] Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Involved in the biosynthesis of the dTDP-L-rhamnose which is a component of the critical linker, D-N-acetylglucosamine-L-rhamnose disaccharide, which connects the galactan region of arabinogalactan to peptidoglycan via a phosphodiester linkage.<ref>PMID:16472764</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ix/2ixc_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2ixc ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.


===RMLC M. TUBERCULOSIS WITH DTDP-RHAMNOSE===
RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation.,Dong C, Major LL, Srikannathasan V, Errey JC, Giraud MF, Lam JS, Graninger M, Messner P, McNeil MR, Field RA, Whitfield C, Naismith JH J Mol Biol. 2007 Jan 5;365(1):146-59. Epub 2006 Sep 29. PMID:17046787<ref>PMID:17046787</ref>


From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2ixc" style="background-color:#fffaf0;"></div>


<!--
==See Also==
The line below this paragraph, {{ABSTRACT_PUBMED_17046787}}, adds the Publication Abstract to the page
*[[RmlC|RmlC]]
(as it appears on PubMed at http://www.pubmed.gov), where 17046787 is the PubMed ID number.
== References ==
-->
<references/>
{{ABSTRACT_PUBMED_17046787}}
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
2IXC is a 4 chains structure of sequences from [http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis Mycobacterium tuberculosis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IXC OCA].
 
==Reference==
<ref group="xtra">PMID:17046787</ref><references group="xtra"/>
[[Category: Mycobacterium tuberculosis]]
[[Category: Mycobacterium tuberculosis]]
[[Category: DTDP-4-dehydrorhamnose 3,5-epimerase]]
[[Category: Dong C]]
[[Category: Dong, C.]]
[[Category: Naismith JH]]
[[Category: Naismith, J H.]]
[[Category: Epimerase]]
[[Category: Epimerise]]
[[Category: Epimerize]]
[[Category: Isomerase]]
[[Category: Lipopolysaccharide biosynthesis]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 08:49:21 2009''

Latest revision as of 12:31, 9 May 2024

RmlC M. tuberculosis with dTDP-rhamnoseRmlC M. tuberculosis with dTDP-rhamnose

Structural highlights

2ixc is a 4 chain structure with sequence from Mycobacterium tuberculosis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.79Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RMLC_MYCTU Catalyzes the epimerization of the C3' and C5'positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. Involved in the biosynthesis of the dTDP-L-rhamnose which is a component of the critical linker, D-N-acetylglucosamine-L-rhamnose disaccharide, which connects the galactan region of arabinogalactan to peptidoglycan via a phosphodiester linkage.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.

RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation.,Dong C, Major LL, Srikannathasan V, Errey JC, Giraud MF, Lam JS, Graninger M, Messner P, McNeil MR, Field RA, Whitfield C, Naismith JH J Mol Biol. 2007 Jan 5;365(1):146-59. Epub 2006 Sep 29. PMID:17046787[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Li W, Xin Y, McNeil MR, Ma Y. rmlB and rmlC genes are essential for growth of mycobacteria. Biochem Biophys Res Commun. 2006 Mar 31;342(1):170-8. Epub 2006 Feb 3. PMID:16472764 doi:http://dx.doi.org/10.1016/j.bbrc.2006.01.130
  2. Dong C, Major LL, Srikannathasan V, Errey JC, Giraud MF, Lam JS, Graninger M, Messner P, McNeil MR, Field RA, Whitfield C, Naismith JH. RmlC, a C3' and C5' carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J Mol Biol. 2007 Jan 5;365(1):146-59. Epub 2006 Sep 29. PMID:17046787 doi:http://dx.doi.org/10.1016/j.jmb.2006.09.063

2ixc, resolution 1.79Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA