1w0m: Difference between revisions
New page: left|200px<br /> <applet load="1w0m" size="450" color="white" frame="true" align="right" spinBox="true" caption="1w0m, resolution 2.5Å" /> '''TRIOSEPHOSPHATE ISOM... |
No edit summary |
||
(21 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | ==Triosephosphate isomerase from Thermoproteus tenax== | ||
Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria | <StructureSection load='1w0m' size='340' side='right'caption='[[1w0m]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1w0m]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoproteus_tenax Thermoproteus tenax]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W0M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1W0M FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1w0m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w0m OCA], [https://pdbe.org/1w0m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1w0m RCSB], [https://www.ebi.ac.uk/pdbsum/1w0m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1w0m ProSAT]</span></td></tr> | |||
</table> | |||
== Function == | |||
[https://www.uniprot.org/uniprot/TPIS_THETK TPIS_THETK] | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/w0/1w0m_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1w0m ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Triosephophate isomerase (TIM) is a dimeric enzyme in eucarya, bacteria and mesophilic archaea. In hyperthermophilic archaea, however, TIM exists as a tetramer composed of monomers that are about 10% shorter than other eucaryal and bacterial TIM monomers. We report here the crystal structure of TIM from Thermoproteus tenax, a hyperthermophilic archaeon that has an optimum growth temperature of 86 degrees C. The structure was determined from both a hexagonal and an orthorhombic crystal form to resolutions of 2.5A and 2.3A, and refined to R-factors of 19.7% and 21.5%, respectively. In both crystal forms, T.tenax TIM exists as a tetramer of the familiar (betaalpha)(8)-barrel. In solution, however, and unlike other hyperthermophilic TIMs, the T.tenax enzyme exhibits an equilibrium between inactive dimers and active tetramers, which is shifted to the tetramer state through a specific interaction with glycerol-1-phosphate dehydrogenase of T.tenax. This observation is interpreted in physiological terms as a need to reduce the build-up of thermolabile metabolic intermediates that would be susceptible to destruction by heat. A detailed structural comparison with TIMs from organisms with growth optima ranging from 15 degrees C to 100 degrees C emphasizes the importance in hyperthermophilic proteins of the specific location of ionic interactions for thermal stability rather than their numbers, and shows a clear correlation between the reduction of heat-labile, surface-exposed Asn and Gln residues with thermoadaptation. The comparison confirms the increase in charged surface-exposed residues at the expense of polar residues. | |||
Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.,Walden H, Taylor GL, Lorentzen E, Pohl E, Lilie H, Schramm A, Knura T, Stubbe K, Tjaden B, Hensel R J Mol Biol. 2004 Sep 17;342(3):861-75. PMID:15342242<ref>PMID:15342242</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
[[Category: | <div class="pdbe-citations 1w0m" style="background-color:#fffaf0;"></div> | ||
==See Also== | |||
*[[Triose phosphate isomerase 3D structures|Triose phosphate isomerase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Large Structures]] | |||
[[Category: Thermoproteus tenax]] | [[Category: Thermoproteus tenax]] | ||
[[Category: Hensel | [[Category: Hensel R]] | ||
[[Category: Knura | [[Category: Knura T]] | ||
[[Category: Lilie | [[Category: Lilie H]] | ||
[[Category: Lorentzen | [[Category: Lorentzen E]] | ||
[[Category: Pohl | [[Category: Pohl E]] | ||
[[Category: Schramm | [[Category: Schramm A]] | ||
[[Category: Stubbe | [[Category: Stubbe K]] | ||
[[Category: Taylor | [[Category: Taylor G]] | ||
[[Category: Tjaden | [[Category: Tjaden B]] | ||
[[Category: Walden | [[Category: Walden H]] | ||