1v1g: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | |||
<StructureSection load='1v1g' size='340' side='right' caption='[[1v1g]], [[Resolution|resolution]] 2.70Å' scene=''> | ==Structure of the Arabidopsis thaliana SOS3 complexed with Calcium(II) ion== | ||
<StructureSection load='1v1g' size='340' side='right'caption='[[1v1g]], [[Resolution|resolution]] 2.70Å' scene=''> | |||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1v1g]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1v1g]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1V1G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1V1G FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1v1g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1v1g OCA], [https://pdbe.org/1v1g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1v1g RCSB], [https://www.ebi.ac.uk/pdbsum/1v1g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1v1g ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/CNBL4_ARATH CNBL4_ARATH] Acts as a calcium sensor involved in the regulatory pathway for the control of intracellular Na(+) and K(+) homeostasis and salt tolerance. Operates in synergy with CIPK24/SOS2 to activate the plasma membrane Na(+)/H(+) antiporter SOS1. May function as positive regulator of salt stress responses. CBL proteins interact with CIPK serine-threonine protein kinases. Binding of a CBL protein to the regulatory NAF domain of a CIPK protein lead to the activation of the kinase in a calcium-dependent manner.<ref>PMID:11006339</ref> <ref>PMID:10725350</ref> <ref>PMID:12034882</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v1/1v1g_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/v1/1v1g_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1v1g ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
Line 32: | Line 33: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: | [[Category: Arabidopsis thaliana]] | ||
[[Category: Albert | [[Category: Large Structures]] | ||
[[Category: Martinez-Ripoll | [[Category: Albert A]] | ||
[[Category: Sanchez-Barrena | [[Category: Martinez-Ripoll M]] | ||
[[Category: Zhu | [[Category: Sanchez-Barrena MJ]] | ||
[[Category: Zhu JK]] | |||
Latest revision as of 12:07, 9 May 2024
Structure of the Arabidopsis thaliana SOS3 complexed with Calcium(II) ionStructure of the Arabidopsis thaliana SOS3 complexed with Calcium(II) ion
Structural highlights
FunctionCNBL4_ARATH Acts as a calcium sensor involved in the regulatory pathway for the control of intracellular Na(+) and K(+) homeostasis and salt tolerance. Operates in synergy with CIPK24/SOS2 to activate the plasma membrane Na(+)/H(+) antiporter SOS1. May function as positive regulator of salt stress responses. CBL proteins interact with CIPK serine-threonine protein kinases. Binding of a CBL protein to the regulatory NAF domain of a CIPK protein lead to the activation of the kinase in a calcium-dependent manner.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe Arabidopsis thaliana SOS3 gene encodes a calcium sensor that is required for plant salt tolerance. The SOS3 protein binds to and activates the self-inhibited SOS2 protein kinase, which mediates the expression and activities of various transporters important for ion homeostasis under salt stress. SOS3 belongs to a unique family of calcium-binding proteins that contain two pairs of EF hand motifs with four putative metal-binding sites. We report the crystal structure of a dimeric SOS3 protein in complex with calcium, and with calcium and manganese. Analytical ultracentrifugation experiments and circular dichroism measurements show that calcium binding is responsible for the dimerization of SOS3. This leads to a change in the global shape and surface properties of the protein that may be sufficient to transmit the Ca(2+) signal elicited during salt stress. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response.,Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A J Mol Biol. 2005 Feb 4;345(5):1253-64. Epub 2004 Dec 8. PMID:15644219[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|