1hh1: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<StructureSection load='1hh1' size='340' side='right'caption='[[1hh1]], [[Resolution|resolution]] 2.15Å' scene=''> | <StructureSection load='1hh1' size='340' side='right'caption='[[1hh1]], [[Resolution|resolution]] 2.15Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1hh1]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1hh1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharolobus_solfataricus Saccharolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HH1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HH1 FirstGlance]. <br> | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15Å</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hh1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hh1 OCA], [https://pdbe.org/1hh1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hh1 RCSB], [https://www.ebi.ac.uk/pdbsum/1hh1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hh1 ProSAT]</span></td></tr> | |||
</table> | </table> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/HJC_SACS2 HJC_SACS2] A structure-specific endonuclease that resolves Holliday junction (HJ) intermediates during genetic recombination; may have some degree of sequence preference in a mobile junction. Cleaves 4-way DNA junctions introducing paired nicks in opposing strands, leaving a 5'-terminal phosphate and a 3'-terminal hydroxyl group that are ligated to produce recombinant products. Can cleave all 4 strands 3 bases 3' of the junction center. Cleaves both mobile and immobile junctions. Modifies the structure of the 4-way DNA junction, a model Holliday junction structure. The protein forms multiple complexes with 4-way DNA, suggesting more than 1 homodimer can bind to each junction.<ref>PMID:10701121</ref> <ref>PMID:10736227</ref> <ref>PMID:10940317</ref> <ref>PMID:11709558</ref> <ref>PMID:17011573</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 29: | Line 30: | ||
==See Also== | ==See Also== | ||
*[[Resolvase|Resolvase]] | *[[Resolvase 3D structures|Resolvase 3D structures]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: | [[Category: Saccharolobus solfataricus]] | ||
[[Category: | [[Category: Bond CS]] | ||
[[Category: | [[Category: Hunter WN]] | ||
[[Category: | [[Category: Kvaratskhelia M]] | ||
[[Category: Richard D]] | |||
[[Category: | [[Category: White MF]] | ||
[[Category: | |||
Latest revision as of 11:56, 9 May 2024
THE STRUCTURE OF HJC, A HOLLIDAY JUNCTION RESOLVING ENZYME FROM SULFOLOBUS SOLFATARICUSTHE STRUCTURE OF HJC, A HOLLIDAY JUNCTION RESOLVING ENZYME FROM SULFOLOBUS SOLFATARICUS
Structural highlights
FunctionHJC_SACS2 A structure-specific endonuclease that resolves Holliday junction (HJ) intermediates during genetic recombination; may have some degree of sequence preference in a mobile junction. Cleaves 4-way DNA junctions introducing paired nicks in opposing strands, leaving a 5'-terminal phosphate and a 3'-terminal hydroxyl group that are ligated to produce recombinant products. Can cleave all 4 strands 3 bases 3' of the junction center. Cleaves both mobile and immobile junctions. Modifies the structure of the 4-way DNA junction, a model Holliday junction structure. The protein forms multiple complexes with 4-way DNA, suggesting more than 1 homodimer can bind to each junction.[1] [2] [3] [4] [5] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe 2.15-A structure of Hjc, a Holliday junction-resolving enzyme from the archaeon Sulfolobus solfataricus, reveals extensive structural homology with a superfamily of nucleases that includes type II restriction enzymes. Hjc is a dimer with a large DNA-binding surface consisting of numerous basic residues surrounding the metal-binding residues of the active sites. Residues critical for catalysis, identified on the basis of sequence comparisons and site-directed mutagenesis studies, are clustered to produce two active sites in the dimer, about 29 A apart, consistent with the requirement for the introduction of paired nicks in opposing strands of the four-way DNA junction substrate. Hjc displays similarity to the restriction endonucleases in the way its specific DNA-cutting pattern is determined but uses a different arrangement of nuclease subunits. Further structural similarity to a broad group of metal/phosphate-binding proteins, including conservation of active-site location, is observed. A high degree of conservation of surface electrostatic character is observed between Hjc and T4-phage endonuclease VII despite a complete lack of structural homology. A model of the Hjc-Holliday junction complex is proposed, based on the available functional and structural data. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus.,Bond CS, Kvaratskhelia M, Richard D, White MF, Hunter WN Proc Natl Acad Sci U S A. 2001 May 8;98(10):5509-14. Epub 2001 May 1. PMID:11331763[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|