2vgf: Difference between revisions

No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==HUMAN ERYTHROCYTE PYRUVATE KINASE: T384M MUTANT==
 
<StructureSection load='2vgf' size='340' side='right' caption='[[2vgf]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
==HUMAN ERYTHROCYTE PYRUVATE KINASE: T384M mutant==
<StructureSection load='2vgf' size='340' side='right'caption='[[2vgf]], [[Resolution|resolution]] 2.75&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2vgf]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1liw 1liw]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VGF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2VGF FirstGlance]. <br>
<table><tr><td colspan='2'>[[2vgf]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1liw 1liw]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2VGF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2VGF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FBP:BETA-FRUCTOSE-1,6-DIPHOSPHATE'>FBP</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PGA:2-PHOSPHOGLYCOLIC+ACID'>PGA</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.75&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2vgb|2vgb]], [[2vgg|2vgg]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FBP:BETA-FRUCTOSE-1,6-DIPHOSPHATE'>FBP</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=PGA:2-PHOSPHOGLYCOLIC+ACID'>PGA</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Pyruvate_kinase Pyruvate kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.40 2.7.1.40] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2vgf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vgf OCA], [https://pdbe.org/2vgf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2vgf RCSB], [https://www.ebi.ac.uk/pdbsum/2vgf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2vgf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2vgf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2vgf OCA], [http://pdbe.org/2vgf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2vgf RCSB], [http://www.ebi.ac.uk/pdbsum/2vgf PDBsum]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/KPYR_HUMAN KPYR_HUMAN]] Defects in PKLR are the cause of pyruvate kinase hyperactivity (PKHYP) [MIM:[http://omim.org/entry/102900 102900]]; also known as high red cell ATP syndrome. This autosomal dominant phenotype is characterized by increase of red blood cell ATP.<ref>PMID:9090535</ref>  Defects in PKLR are the cause of pyruvate kinase deficiency of red cells (PKRD) [MIM:[http://omim.org/entry/266200 266200]]. A frequent cause of hereditary non-spherocytic hemolytic anemia. Clinically, pyruvate kinase-deficient patients suffer from a highly variable degree of chronic hemolysis, ranging from severe neonatal jaundice and fatal anemia at birth, severe transfusion-dependent chronic hemolysis, moderate hemolysis with exacerbation during infection, to a fully compensated hemolysis without apparent anemia.  
[https://www.uniprot.org/uniprot/KPYR_HUMAN KPYR_HUMAN] Defects in PKLR are the cause of pyruvate kinase hyperactivity (PKHYP) [MIM:[https://omim.org/entry/102900 102900]; also known as high red cell ATP syndrome. This autosomal dominant phenotype is characterized by increase of red blood cell ATP.<ref>PMID:9090535</ref>  Defects in PKLR are the cause of pyruvate kinase deficiency of red cells (PKRD) [MIM:[https://omim.org/entry/266200 266200]. A frequent cause of hereditary non-spherocytic hemolytic anemia. Clinically, pyruvate kinase-deficient patients suffer from a highly variable degree of chronic hemolysis, ranging from severe neonatal jaundice and fatal anemia at birth, severe transfusion-dependent chronic hemolysis, moderate hemolysis with exacerbation during infection, to a fully compensated hemolysis without apparent anemia.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/KPYR_HUMAN KPYR_HUMAN]] Plays a key role in glycolysis (By similarity).  
[https://www.uniprot.org/uniprot/KPYR_HUMAN KPYR_HUMAN] Plays a key role in glycolysis (By similarity).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vg/2vgf_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/vg/2vgf_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 22: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2vgf ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2vgf ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Deficiency of human erythrocyte isozyme (RPK) is, together with glucose-6-phosphate dehydrogenase deficiency, the most common cause of the nonspherocytic hemolytic anemia. To provide a molecular framework to the disease, we have solved the 2.7 A resolution crystal structure of human RPK in complex with fructose 1,6-bisphosphate, the allosteric activator, and phosphoglycolate, a substrate analogue, and we have functionally and structurally characterized eight mutants (G332S, G364D, T384M, D390N, R479H, R486W, R504L, and R532W) found in RPK-deficient patients. The mutations target distinct regions of RPK structure, including domain interfaces and catalytic and allosteric sites. The mutations affect to a different extent thermostability, catalytic efficiency, and regulatory properties. These studies are the first to correlate the clinical symptoms with the molecular properties of the mutant enzymes. Mutations greatly impairing thermostability and/or activity are associated with severe anemia. Some mutant proteins exhibit moderate changes in the kinetic parameters, which are sufficient to cause mild to severe anemia, underlining the crucial role of RPK for erythrocyte metabolism. Prediction of the effects of mutations is difficult because there is no relation between the nature and location of the replaced amino acid and the type of molecular perturbation. Characterization of mutant proteins may serve as a valuable tool to assist with diagnosis and genetic counseling.
Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia.,Valentini G, Chiarelli LR, Fortin R, Dolzan M, Galizzi A, Abraham DJ, Wang C, Bianchi P, Zanella A, Mattevi A J Biol Chem. 2002 Jun 28;277(26):23807-14. Epub 2002 Apr 17. PMID:11960989<ref>PMID:11960989</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2vgf" style="background-color:#fffaf0;"></div>
==See Also==
*[[Pyruvate Kinase|Pyruvate Kinase]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Pyruvate kinase]]
[[Category: Large Structures]]
[[Category: Abraham, D J]]
[[Category: Abraham DJ]]
[[Category: Bianchi, P]]
[[Category: Bianchi P]]
[[Category: Chiarelli, L R]]
[[Category: Chiarelli LR]]
[[Category: Dolzan, M]]
[[Category: Dolzan M]]
[[Category: Fortin, R]]
[[Category: Fortin R]]
[[Category: Galizzi, A]]
[[Category: Galizzi A]]
[[Category: Mattevi, A]]
[[Category: Mattevi A]]
[[Category: Valentini, G]]
[[Category: Valentini G]]
[[Category: Wang, C]]
[[Category: Wang C]]
[[Category: Zanella, A]]
[[Category: Zanella A]]
[[Category: Glycolysis]]
[[Category: Metal-binding]]
[[Category: Phosphorylation]]
[[Category: R-state]]
[[Category: Transferase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA