2l14: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 9: Line 9:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/CBP_MOUSE CBP_MOUSE] Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (By similarity).<ref>PMID:10207073</ref> <ref>PMID:11701890</ref> <ref>PMID:15220471</ref> <ref>PMID:16287980</ref>  
[https://www.uniprot.org/uniprot/CBP_MOUSE CBP_MOUSE] Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (By similarity).<ref>PMID:10207073</ref> <ref>PMID:11701890</ref> <ref>PMID:15220471</ref> <ref>PMID:16287980</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The activity and stability of the tumor suppressor p53 is regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Palpha1 and Palpha2), which extend from Phe19 to Leu25 and Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Calpha1: residues 2066-2075, Calpha2: residues 2081-2092, and Calpha3: residues 2095-2105) with a hydrophobic groove into which the p53 helices Palpha1 and Palpha2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.
Structure of the p53 transactivation domain in complex with the nuclear coactivator binding domain of CBP.,Lee CW, Martinez-Yamout MA, Dyson HJ, Wright PE Biochemistry. 2010 Oct 20. PMID:20961098<ref>PMID:20961098</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2l14" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==

Latest revision as of 09:51, 1 May 2024

Structure of CBP nuclear coactivator binding domain in complex with p53 TADStructure of CBP nuclear coactivator binding domain in complex with p53 TAD

Structural highlights

2l14 is a 2 chain structure with sequence from Homo sapiens and Mus musculus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CBP_MOUSE Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300 (By similarity).[1] [2] [3] [4]

See Also

References

  1. Hung HL, Lau J, Kim AY, Weiss MJ, Blobel GA. CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. Mol Cell Biol. 1999 May;19(5):3496-505. PMID:10207073
  2. Xu W, Chen H, Du K, Asahara H, Tini M, Emerson BM, Montminy M, Evans RM. A transcriptional switch mediated by cofactor methylation. Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8. PMID:11701890 doi:10.1126/science.1065961
  3. Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10042-7. Epub 2004 Jun 25. PMID:15220471 doi:10.1073/pnas.0400593101
  4. Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, Maul GG, Kwok RP, Shih HM. SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16973-8. Epub 2005 Nov 15. PMID:16287980 doi:10.1073/pnas.0504460102
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA