1uzk: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== | |||
<StructureSection load='1uzk' size='340' side='right' caption='[[1uzk]], [[Resolution|resolution]] 1.35Å' scene=''> | ==Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, Ca bound to cbEGF23 domain only== | ||
<StructureSection load='1uzk' size='340' side='right'caption='[[1uzk]], [[Resolution|resolution]] 1.35Å' scene=''> | |||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1uzk]] is a 1 chain structure with sequence from [ | <table><tr><td colspan='2'>[[1uzk]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UZK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UZK FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.35Å</td></tr> | ||
<tr><td class="sblockLbl"><b>[[ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uzk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uzk OCA], [https://pdbe.org/1uzk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uzk RCSB], [https://www.ebi.ac.uk/pdbsum/1uzk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uzk ProSAT]</span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | </table> | ||
<table> | |||
== Disease == | == Disease == | ||
[ | [https://www.uniprot.org/uniprot/FBN1_HUMAN FBN1_HUMAN] Defects in FBN1 are a cause of Marfan syndrome (MFS) [MIM:[https://omim.org/entry/154700 154700]. MFS is an autosomal dominant disorder that affects the skeletal, ocular, and cardiovascular systems. A wide variety of skeletal abnormalities occurs with MFS, including scoliosis, chest wall deformity, tall stature, abnormal joint mobility. Ectopia lentis occurs in up to about 80% of MFS patients and is almost always bilateral. The leading cause of premature death in MFS patients is progressive dilation of the aortic root and ascending aorta, causing aortic incompetence and dissection. Note=The majority of the more than 600 mutations in FBN1 currently known are point mutations, the rest are frameshifts and splice site mutations. Marfan syndrome has been suggested in at least 2 historical figures, Abraham Lincoln and Paganini.<ref>PMID:15221638</ref> <ref>PMID:1852208</ref> <ref>PMID:1301946</ref> <ref>PMID:1569206</ref> <ref>PMID:8406497</ref> <ref>PMID:8504310</ref> <ref>PMID:8281141</ref> <ref>PMID:7977366</ref> <ref>PMID:8004112</ref> <ref>PMID:8040326</ref> <ref>PMID:8071963</ref> <ref>PMID:7870075</ref> <ref>PMID:8136837</ref> <ref>PMID:7611299</ref> <ref>PMID:7738200</ref> <ref>PMID:8882780</ref> <ref>PMID:8863159</ref> <ref>PMID:9254848</ref> <ref>PMID:9338581</ref> <ref>PMID:9837823</ref> <ref>PMID:9452085</ref> <ref>PMID:10694921</ref> <ref>PMID:10441597</ref> <ref>PMID:10425041</ref> <ref>PMID:11700157</ref> <ref>PMID:12203992</ref> <ref>PMID:11826022</ref> <ref>PMID:14695540</ref> <ref>PMID:15161917</ref> <ref>PMID:16222657</ref> <ref>PMID:16220557</ref> <ref>PMID:20803651</ref> <ref>PMID:21542060</ref> Defects in FBN1 are a cause of ectopia lentis, isolated, autosomal dominant (ECTOL1) [MIM:[https://omim.org/entry/129600 129600]. An ocular abnormality characterized by partial or complete displacement of the lens from its space resulting from defective zonule formation.<ref>PMID:11700157</ref> <ref>PMID:12203992</ref> <ref>PMID:11826022</ref> <ref>PMID:8188302</ref> Defects in FBN1 are the cause of Weill-Marchesani syndrome 2 (WMS2) [MIM:[https://omim.org/entry/608328 608328]. A rare connective tissue disorder characterized by short stature, brachydactyly, joint stiffness, and eye abnormalities including microspherophakia, ectopia lentis, severe myopia and glaucoma.<ref>PMID:12525539</ref> Defects in FBN1 are a cause of Shprintzen-Goldberg craniosynostosis syndrome (SGS) [MIM:[https://omim.org/entry/182212 182212]. SGS is a very rare syndrome characterized by a marfanoid habitus, craniosynostosis, characteristic dysmorphic facial features, skeletal and cardiovascular abnormalities, mental retardation, developmental delay and learning disabilities.[:] Defects in FBN1 are a cause of overlap connective tissue disease (OCTD) [MIM:[https://omim.org/entry/604308 604308]. A heritable disorder of connective tissue characterized by involvement of the mitral valve, aorta, skeleton, and skin. MASS syndrome is closely resembling both the Marfan syndrome and the Barlow syndrome. However, no dislocation of the lenses or aneurysmal changes occur in the aorta, and the mitral valve prolapse is by no means invariable.<ref>PMID:2739055</ref> Defects in FBN1 are a cause of stiff skin syndrome (SSKS) [MIM:[https://omim.org/entry/184900 184900]. It is a syndrome characterized by hard, thick skin, usually over the entire body, which limits joint mobility and causes flexion contractures. Other occasional findings include lipodystrophy and muscle weakness.<ref>PMID:20375004</ref> Defects in FBN1 are the cause of geleophysic dysplasia type 2 (GPHYSD2) [MIM:[https://omim.org/entry/614185 614185]. An autosomal dominant disorder characterized by severe short stature, short hands and feet, joint limitations, and skin thickening. Radiologic features include delayed bone age, cone-shaped epiphyses, shortened long tubular bones, and ovoid vertebral bodies. Affected individuals have characteristic facial features including a 'happy' face with full cheeks, shortened nose, hypertelorism, long and flat philtrum, and thin upper lip. Other distinctive features include progressive cardiac valvular thickening often leading to an early death, toe walking, tracheal stenosis, respiratory insufficiency, and lysosomal-like storage vacuoles in various tissues.<ref>PMID:21683322</ref> Defects in FBN1 are the cause of acromicric dysplasia (ACMICD) [MIM:[https://omim.org/entry/102370 102370]. An autosomal dominant disorder characterized by severe short stature, short hands and feet, joint limitations, and skin thickening. Radiologic features include delayed bone age, cone-shaped epiphyses, shortened long tubular bones, and ovoid vertebral bodies. Affected individuals have distinct facial features, including round face, well-defined eyebrows, long eyelashes, bulbous nose with anteverted nostrils, long and prominent philtrum, and thick lips with a small mouth. Other characteristic features include hoarse voice and pseudomuscular build, and there are distinct skeletal features as well, including an internal notch of the femoral head, internal notch of the second metacarpal, and external notch of the fifth metacarpal.<ref>PMID:21683322</ref> | ||
== Function == | == Function == | ||
[ | [https://www.uniprot.org/uniprot/FBN1_HUMAN FBN1_HUMAN] Fibrillins are structural components of 10-12 nm extracellular calcium-binding microfibrils, which occur either in association with elastin or in elastin-free bundles. Fibrillin-1-containing microfibrils provide long-term force bearing structural support. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively (By similarity).<ref>PMID:15062093</ref> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uz/1uzk_consurf.spt"</scriptWhenChecked> | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uz/1uzk_consurf.spt"</scriptWhenChecked> | ||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1uzk ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 35: | Line 27: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Handford | [[Category: Large Structures]] | ||
[[Category: Harlos | [[Category: Handford PA]] | ||
[[Category: Knott | [[Category: Harlos K]] | ||
[[Category: Lee | [[Category: Knott V]] | ||
[[Category: Stuart | [[Category: Lee SSJ]] | ||
[[Category: Stuart DI]] | |||
Latest revision as of 09:35, 1 May 2024
Integrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, Ca bound to cbEGF23 domain onlyIntegrin binding cbEGF22-TB4-cbEGF33 fragment of human fibrillin-1, Ca bound to cbEGF23 domain only
Structural highlights
DiseaseFBN1_HUMAN Defects in FBN1 are a cause of Marfan syndrome (MFS) [MIM:154700. MFS is an autosomal dominant disorder that affects the skeletal, ocular, and cardiovascular systems. A wide variety of skeletal abnormalities occurs with MFS, including scoliosis, chest wall deformity, tall stature, abnormal joint mobility. Ectopia lentis occurs in up to about 80% of MFS patients and is almost always bilateral. The leading cause of premature death in MFS patients is progressive dilation of the aortic root and ascending aorta, causing aortic incompetence and dissection. Note=The majority of the more than 600 mutations in FBN1 currently known are point mutations, the rest are frameshifts and splice site mutations. Marfan syndrome has been suggested in at least 2 historical figures, Abraham Lincoln and Paganini.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] Defects in FBN1 are a cause of ectopia lentis, isolated, autosomal dominant (ECTOL1) [MIM:129600. An ocular abnormality characterized by partial or complete displacement of the lens from its space resulting from defective zonule formation.[34] [35] [36] [37] Defects in FBN1 are the cause of Weill-Marchesani syndrome 2 (WMS2) [MIM:608328. A rare connective tissue disorder characterized by short stature, brachydactyly, joint stiffness, and eye abnormalities including microspherophakia, ectopia lentis, severe myopia and glaucoma.[38] Defects in FBN1 are a cause of Shprintzen-Goldberg craniosynostosis syndrome (SGS) [MIM:182212. SGS is a very rare syndrome characterized by a marfanoid habitus, craniosynostosis, characteristic dysmorphic facial features, skeletal and cardiovascular abnormalities, mental retardation, developmental delay and learning disabilities.[:] Defects in FBN1 are a cause of overlap connective tissue disease (OCTD) [MIM:604308. A heritable disorder of connective tissue characterized by involvement of the mitral valve, aorta, skeleton, and skin. MASS syndrome is closely resembling both the Marfan syndrome and the Barlow syndrome. However, no dislocation of the lenses or aneurysmal changes occur in the aorta, and the mitral valve prolapse is by no means invariable.[39] Defects in FBN1 are a cause of stiff skin syndrome (SSKS) [MIM:184900. It is a syndrome characterized by hard, thick skin, usually over the entire body, which limits joint mobility and causes flexion contractures. Other occasional findings include lipodystrophy and muscle weakness.[40] Defects in FBN1 are the cause of geleophysic dysplasia type 2 (GPHYSD2) [MIM:614185. An autosomal dominant disorder characterized by severe short stature, short hands and feet, joint limitations, and skin thickening. Radiologic features include delayed bone age, cone-shaped epiphyses, shortened long tubular bones, and ovoid vertebral bodies. Affected individuals have characteristic facial features including a 'happy' face with full cheeks, shortened nose, hypertelorism, long and flat philtrum, and thin upper lip. Other distinctive features include progressive cardiac valvular thickening often leading to an early death, toe walking, tracheal stenosis, respiratory insufficiency, and lysosomal-like storage vacuoles in various tissues.[41] Defects in FBN1 are the cause of acromicric dysplasia (ACMICD) [MIM:102370. An autosomal dominant disorder characterized by severe short stature, short hands and feet, joint limitations, and skin thickening. Radiologic features include delayed bone age, cone-shaped epiphyses, shortened long tubular bones, and ovoid vertebral bodies. Affected individuals have distinct facial features, including round face, well-defined eyebrows, long eyelashes, bulbous nose with anteverted nostrils, long and prominent philtrum, and thick lips with a small mouth. Other characteristic features include hoarse voice and pseudomuscular build, and there are distinct skeletal features as well, including an internal notch of the femoral head, internal notch of the second metacarpal, and external notch of the fifth metacarpal.[42] FunctionFBN1_HUMAN Fibrillins are structural components of 10-12 nm extracellular calcium-binding microfibrils, which occur either in association with elastin or in elastin-free bundles. Fibrillin-1-containing microfibrils provide long-term force bearing structural support. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively (By similarity).[43] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. References
|
|