Structure superposition tools: Difference between revisions

Eric Martz (talk | contribs)
Angel Herraez (talk | contribs)
some details abot FATCAT output
 
(9 intermediate revisions by 2 users not shown)
Line 129: Line 129:
*Visualization: YES.
*Visualization: YES.
*Color by deviation: '''NO'''. (Colors identify twist/hinge boundaries.)
*Color by deviation: '''NO'''. (Colors identify twist/hinge boundaries.)
*Offered by RCSB? YES
*Offered by RCSB? YES, with both options: rigid and flexible.
*Download result: one pdb file, not using MODEL/ENDMDL delimiters but with the aligned structures labeled as chains A and B. If done at RCSB, download has 2 separate mmCIF files.
*Special features:
*Special features:
**Produces a [[morph]] between the two superposed chains (at the link "Interpolating between ...").
**Produces a [[morph]] between the two superposed chains (at the link "Interpolating between ..."). It is a 10-model PDB file '''with only alpha carbons'''.
**Offers a RasMol script to color each rigid segment distinctly (separated by twists/hinges).
**Offers a RasMol script to color each rigid segment distinctly (separated by twists/hinges).


Line 196: Line 197:
*Search with uploaded models: YES
*Search with uploaded models: YES
*Color by deviation: ?
*Color by deviation: ?
*Special features: ?
*Special features:
** Allows specification of restricted regions to superpose.


===TM-Align===
===TM-Align===
Line 216: Line 218:


*Server: [http://topmatch.services.came.sbg.ac.at/ TopMatch]  
*Server: [http://topmatch.services.came.sbg.ac.at/ TopMatch]  
*Publications (both 2008)<ref name="topmatch">PMID: 18174182</ref><ref name="topmatch2">PMID: 18227113</ref>, (2012)<ref name="topmatch3">PMID: 22483118</ref>
*Publications (both 2008)<ref name="topmatch">PMID: 18174182</ref><ref name="topmatch2">PMID: 18227113</ref>, (2012)<ref name="topmatch3">PMID: 22483118</ref>, (2020)<ref name="topmatch4">PMID: 32479639</ref>
*Help on server: YES.
*Help on server: YES.
*Does superposition involve sequence comparison? NO.
*Does superposition involve sequence comparison? NO.
Line 223: Line 225:
*Multiple superposition: NO.
*Multiple superposition: NO.
*Structure-based sequence alignment: YES.
*Structure-based sequence alignment: YES.
*Structure neighbors (pre-calculated): NO (but see TopSearch).
*Structure neighbors (pre-calculated): NO (but see [[#TopSearch|TopSearch]]).
*Pairwise superposition including uploaded models: YES
*Pairwise superposition including uploaded models: YES
*Visualization: YES.  
*Visualization: YES.  
Line 229: Line 231:
*Offered by RCSB? NO.
*Offered by RCSB? NO.
*Special features:
*Special features:
**Structure superposition of multiprotein complexes.
**Structure superposition of multichain complexes (of both proteins and nucleic acids).
**You can download the superposition target PDB file (in a separate file from the query PDB file). A PyMOL script is also available, as is the matrix to transform the target coordinates.
**You can download the superposition target PDB file (in a separate file from the query PDB file). A PyMOL script is also available, as is the matrix to transform the target coordinates.


Line 285: Line 287:
===DeepView = Swiss-PDBViewer===
===DeepView = Swiss-PDBViewer===
*Download site: [http://www.expasy.org/spdbv/ DeepView Swiss-PdbViewer].
*Download site: [http://www.expasy.org/spdbv/ DeepView Swiss-PdbViewer].
*[https://spdbv.unil.ch/superpos_tut.html Tutorial on superposition using DeepView].
*Publications (1997, 1999)<ref>PMID: 9504803</ref><ref>PMID: 10470037</ref>
*Publications (1997, 1999)<ref>PMID: 9504803</ref><ref>PMID: 10470037</ref>
*Version 4.11 released in 2019; works on Windows and macOS 10.5-10.14.
*Version 4.11 released in 2019; works on Windows and macOS 10.5-10.14.
Line 305: Line 308:
===PyMOL===
===PyMOL===
*Download site: [http://www.pymol.org/ PyMOL.Org]
*Download site: [http://www.pymol.org/ PyMOL.Org]
*The ''super'' command does structural alignment.
*The ''super'' command does structural superposition.
*Color by RMSD: YES [http://www.pymolwiki.org/index.php/ColorByRMSD example].
*Color by RMSD: YES [http://www.pymolwiki.org/index.php/ColorByRMSD example].


===UCSF Chimera===
===UCSF Chimera===
*Download site: [https://www.cgl.ucsf.edu/chimera/download.html]
*Download site: [https://www.cgl.ucsf.edu/chimera/download.html www.cgl.ucsf.edu/chimera/download.html]
*The ''matchmaker'' command does structural alignment, see [https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/superposition.html here]. Or use "match" to specify exact atom pairs, see [https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/superposition.html here]
*The ''matchmaker'' command does structural superposition, see [https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/superposition.html here]. Or use "match" to specify exact atom pairs, see [https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/superposition.html here]
*Color by RMSD: YES [http://plato.cgl.ucsf.edu/pipermail/chimera-users/2016-June/012379.html steps outlined under '(4)'] or [http://plato.cgl.ucsf.edu/pipermail/chimera-users/2012-April/007393.html Under '(A)' here]
*Color by RMSD: YES [http://plato.cgl.ucsf.edu/pipermail/chimera-users/2016-June/012379.html steps outlined under '(4)'] or [http://plato.cgl.ucsf.edu/pipermail/chimera-users/2012-April/007393.html Under '(A)' here]


===TopMatch===
===TopMatch===
Line 324: Line 326:
===Example Requiring Flexibility===
===Example Requiring Flexibility===


'''This example requires flexibility for a good alignment''': [[2bbm]]:A vs. [[1cfc]]:A. Length: 148. 97% sequence identity (145/148), 99% similar. These files contain calmodulin. In [[2bbm]] (''Drosophila''), the two calcium-binding domains are wrapped around a peptide. In [[1cfc]] (''Xenopus''), there is no calcium and no peptide, and the linker between the two domains is flexible.
Tests performed in 2011. '''This example requires flexibility for a good superposition''': [[2bbm]]:A vs. [[1cfc]]:A. Length: 148. 97% sequence identity (145/148), 99% similar. These files contain calmodulin. In [[2bbm]] (''Drosophila''), the two calcium-binding domains are wrapped around a peptide. In [[1cfc]] (''Xenopus''), there is no calcium and no peptide, and the linker between the two domains is flexible.
*CE:
*CE:
**4.8 &Aring; RMSD.
**4.8 &Aring; RMSD.
Line 342: Line 344:
Example 1<br>Summary for 1fszA vs. 1tubA
Example 1<br>Summary for 1fszA vs. 1tubA
</td></tr><tr><td>
</td></tr><tr><td>
Tool</td><td>Residues Aligned</td><td>RMSD, &Aring;</td><td>Unaligned Residues /Total
Tool</td><td>Residues Superposed</td><td>RMSD, &Aring;</td><td>Residues Not Superposed/Total
</td></tr><tr><td>
</td></tr><tr><td>
CE</td><td>305</td><td>3.2</td><td>96/401
CE</td><td>305</td><td>3.2</td><td>96/401
Line 364: Line 366:
Example 2<br>Mammalian tubulin &alpha; vs. &beta;, 1tubA (length 440) vs. 1tubB (length 427): 40% sequence identity.
Example 2<br>Mammalian tubulin &alpha; vs. &beta;, 1tubA (length 440) vs. 1tubB (length 427): 40% sequence identity.
</td></tr><tr><td>
</td></tr><tr><td>
Tool</td><td>Residues Aligned</td><td>RMSD, &Aring;</td><td>Unaligned Residues
Tool</td><td>Residues Superposed</td><td>RMSD, &Aring;</td><td>Residues Not Superposed
</td></tr><tr><td>
</td></tr><tr><td>
CE</td><td>404</td><td>1.34</td><td>56/"460"(?)
CE</td><td>404</td><td>1.34</td><td>56/"460"(?)
Line 377: Line 379:
<tr><td>Topmatch</td><td>416</td><td>1.68
<tr><td>Topmatch</td><td>416</td><td>1.68
</td></tr></table>
</td></tr></table>
[[1fsz]] is the bacterial cell division protein FtsZ, length 334 residues with coordinates (372 in crystallized protein). It has structural similarity to mammalian tubulin<ref>PMID: 9628483</ref><ref>PMID: 20459678</ref> found in [[1tub]] chain A, length 440. However, the sequence identity is low. 92/372 residues can be aligned with 19% identity (2 gaps), and another 14 residue stretch with 42% identity (no gaps).
[[1fsz]] is the bacterial cell division protein FtsZ, length 334 residues with coordinates (372 in crystallized protein). It has structural similarity to mammalian tubulin<ref>PMID: 9628483</ref><ref>PMID: 20459678</ref> found in [[1tub]] chain A, length 440. However, the sequence identity is low. 92/372 residues can be aligned with 19% identity (2 gaps), and another 14 residue stretch with 42% identity (no gaps). '''Tests in this section were performed in 2011.'''
====CE example====
====CE example====
*3.2 &Aring; RMSD for 305 residues. The structural alignment has 96 unaligned "gap" residues: one large gap of ~30 residues, and ten smaller gaps of 8 residues or less.
*3.2 &Aring; RMSD for 305 residues. The structural superposition has 96 unaligned "gap" residues: one large gap of ~30 residues, and ten smaller gaps of 8 residues or less.
*Z-score: 6.5.
*Z-score: 6.5.
*12.5% sequence identity within the structural alignment.
*12.5% sequence identity within the structural superposition.
*Same results obtained at either the CE website, or using the ''Calculate Structure Alignment'' java webstart software (see above).
*Same results obtained at either the CE website, or using the ''Calculate Structure Alignment'' java webstart software.


====Dali example====
====Dali example====
*3.2 &Aring; RMSD RIGID alignment included 299 residues.
*3.2 &Aring; RMSD RIGID superposition included 299 residues.
*Z-score: 25.5.
*Z-score: 25.5.
*13% sequence identity for the structurally aligned regions.
*13% sequence identity for the structurally superposed regions.
*The structure-based sequence alignment has many gaps.
*The structure-based sequence alignment has many gaps.


Line 393: Line 395:
Tested with version 4.01 OS X.
Tested with version 4.01 OS X.
*Magic Fit -- SEQUENCED-BASED:
*Magic Fit -- SEQUENCED-BASED:
**4.4 &Aring; RMSD for 114 aligned residues.
**4.4 &Aring; RMSD for 114 superposed residues.
*Iterative Magic Fit -- Sequence based followed by RMSD minimization:
*Iterative Magic Fit -- Sequence based followed by RMSD minimization:
**1.69 &Aring; RMSD for 159 aligned residues.
**1.69 &Aring; RMSD for 159 superposed residues.
*Explore Domain Alternate Fits -- sequence-independent alignment:
*Explore Domain Alternate Fits -- sequence-independent superposition:
**Used option NOT to use selected residues.
**Used option NOT to use selected residues.
**Nevertheless program complained repeatedly that I had not selected residues.
**Nevertheless program complained repeatedly that I had not selected residues.
**Nevertheless program produced an alignment:
**Nevertheless program produced an alignment:
**1.0 &Aring; for 64 aligned residues.
**1.0 &Aring; for 64 superposed residues.


====FATCAT example====
====FATCAT example====
*3.02 &Aring; RMSD RIGID alignment includes 298 residues.
*3.02 &Aring; RMSD RIGID superposition includes 298 residues.
*P value: 5 x 10<sup>-8</sup> (used instead of z-score to take twists into account).
*P value: 5 x 10<sup>-8</sup> (used instead of z-score to take twists into account).
*10.2% sequence identity in the structurally aligned regions.
*10.2% sequence identity in the structurally superposed regions.
*The structure-based sequence alignment has many gaps, looking similar to that generated by CE.
*The structure-based sequence alignment has many gaps, looking similar to that generated by CE.
*FLEXIBLE alignment introduced ZERO twists (hinges), so gave the same result as the rigid alignment.
*FLEXIBLE superposition introduced ZERO twists (hinges), so gave the same result as the rigid superposition.


====MAMMOTH example====
====MAMMOTH example====
*4.0 &Aring; (?) with 298 aligned residues (?) (Labeling in results is unclear.)
*4.0 &Aring; (?) with 298 superposed residues (?) (Labeling in results is unclear.)
*Structure-based sequence alignment is displayed.
*Structure-based sequence alignment is displayed.


====PyMOL example====
====PyMOL example====
*Command: super 1fsz////CA, 1tub_a////CA, object=supAB
*Command: super 1fsz////CA, 1tub_a////CA, object=supAB
**4.5 &Aring; RMSD for 197 aligned residues.
**4.5 &Aring; RMSD for 197 superposed residues.


====TM-Align example====
====TM-Align example====
*3.42 &Aring; for 312 aligned residues.
*3.42 &Aring; for 312 superposed residues.
*Structure-based sequence alignment is displayed.
*Structure-based sequence alignment is displayed.


====TopMatch example====
====TopMatch example====
*2.9 &Aring; RMSD. Alignment includes 275 residues.
*2.9 &Aring; RMSD. Superposition includes 275 residues.
*13% sequence identity in the aligned regions.
*13% sequence identity in the superposed regions.
*Tried the example requiring flexibility (above) as a second case. A 52 residue subdomain was aligned with RMSD 2.69 &Aring;, an alternative alignment matching the second domain shows up with 47 residues/RMSD 2.69 &Aring;.
*Tried the example requiring flexibility (above) as a second case. A 52 residue subdomain was superposed with RMSD 2.69 &Aring;, an alternative superposition matching the second domain shows up with 47 residues/RMSD 2.69 &Aring;.


====VAST example====
====VAST example====
* 4.0 &Aring; RMSD for 299 aligned residues.
* 4.0 &Aring; RMSD for 299 superposed residues.
* Expectation value: 10<sup>-16</sup>.
* Expectation value: 10<sup>-16</sup>.
* 11.4% sequence identity in the aligned segments.
* 11.4% sequence identity in the superposed segments.
* '''I could find no way to download the aligned PDB file for visualization in Jmol or RasMol.'''
* '''I could find no way to download the aligned PDB file for visualization in Jmol or RasMol.'''


==References==
==References==
<references />
<references />

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Eric Martz, Markus Wiederstein, Wayne Decatur, Ronald Ayoub, Joel L. Sussman, Angel Herraez