4qqd: Difference between revisions
New page: '''Unreleased structure''' The entry 4qqd is ON HOLD Authors: Liu, Y., Tempel, W., Iqbal, A., Walker, J.R., Bountra, C., Arrowsmith, C.H., Edwards, A.M., Brown, P.J., Min, J., Structura... |
No edit summary |
||
(7 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Crystal Structure of tandem tudor domains of UHRF1 in complex with a small organic molecule== | |||
<StructureSection load='4qqd' size='340' side='right'caption='[[4qqd]], [[Resolution|resolution]] 2.28Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4qqd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QQD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QQD FirstGlance]. <br> | |||
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.28Å</td></tr> | |||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=36X:4-METHYL-2,3,4,5,6,7-HEXAHYDRODICYCLOPENTA[B,E]PYRIDIN-8(1H)-IMINE'>36X</scene>, <scene name='pdbligand=UNX:UNKNOWN+ATOM+OR+ION'>UNX</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qqd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qqd OCA], [https://pdbe.org/4qqd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qqd RCSB], [https://www.ebi.ac.uk/pdbsum/4qqd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qqd ProSAT]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[https://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN] Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression. | |||
== Function == | |||
[https://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN] Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.<ref>PMID:10646863</ref> <ref>PMID:15009091</ref> <ref>PMID:15361834</ref> <ref>PMID:17673620</ref> <ref>PMID:17967883</ref> <ref>PMID:19056828</ref> <ref>PMID:21745816</ref> <ref>PMID:22945642</ref> <ref>PMID:21777816</ref> | |||
==See Also== | |||
*[[Ubiquitin protein ligase 3D structures|Ubiquitin protein ligase 3D structures]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | |||
[[Category: Large Structures]] | |||
[[Category: Arrowsmith CH]] | |||
[[Category: Bountra C]] | |||
[[Category: Brown PJ]] | |||
[[Category: Edwards AM]] | |||
[[Category: Iqbal A]] | |||
[[Category: Liu Y]] | |||
[[Category: Min J]] | |||
[[Category: Tempel W]] | |||
[[Category: Walker JR]] |
Latest revision as of 09:52, 3 April 2024
Crystal Structure of tandem tudor domains of UHRF1 in complex with a small organic moleculeCrystal Structure of tandem tudor domains of UHRF1 in complex with a small organic molecule
Structural highlights
DiseaseUHRF1_HUMAN Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression. FunctionUHRF1_HUMAN Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.[1] [2] [3] [4] [5] [6] [7] [8] [9] See AlsoReferences
|
|