1ixq: Difference between revisions

No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1ixq.gif|left|200px]]


{{Structure
==Enzyme-Phosphate2 Complex of Pyridoxine 5'-Phosphate synthase==
|PDB= 1ixq |SIZE=350|CAPTION= <scene name='initialview01'>1ixq</scene>, resolution 2.3&Aring;
<StructureSection load='1ixq' size='340' side='right'caption='[[1ixq]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
|SITE=  
== Structural highlights ==
|LIGAND= <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>
<table><tr><td colspan='2'>[[1ixq]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IXQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1IXQ FirstGlance]. <br>
|ACTIVITY=
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
|GENE= pdxJ ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
|DOMAIN=
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ixq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ixq OCA], [https://pdbe.org/1ixq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ixq RCSB], [https://www.ebi.ac.uk/pdbsum/1ixq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ixq ProSAT]</span></td></tr>
|RELATEDENTRY=[[1ho1|1HO1]], [[1ho4|1HO4]], [[1ixn|1IXN]], [[1ixo|1IXO]], [[1ixp|1IXP]]
</table>
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ixq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ixq OCA], [http://www.ebi.ac.uk/pdbsum/1ixq PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1ixq RCSB]</span>
== Function ==
}}
[https://www.uniprot.org/uniprot/PDXJ_ECOLI PDXJ_ECOLI] Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino-2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate.<ref>PMID:10225425</ref>
 
== Evolutionary Conservation ==
'''Enzyme-Phosphate2 Complex of Pyridoxine 5'-Phosphate synthase'''
[[Image:Consurf_key_small.gif|200px|right]]
 
Check<jmol>
 
  <jmolCheckbox>
==Overview==
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ix/1ixq_consurf.spt"</scriptWhenChecked>
Pyridoxine 5'-phosphate (PNP) synthase is the last enzyme in the de novo biosynthesis of vitamin B(6) catalyzing the complicated ring-closure reaction between 1-deoxy-D-xylulose-5-phosphate and 1-amino-acetone-3-phosphate. Here we present the crystal structures of four PNP synthase complexes with substrates and substrate analogs. While the overall fold of the enzyme is conserved in all complexes, characteristic readjustments were observed in the active site. The complementary structural information allowed us to postulate a detailed reaction mechanism. The observed binding mode of substrates indicates how the first reaction intermediate, the Schiff-base conjugate, is formed. The most important mechanistic features are the presence of two phosphate-binding sites with distinct affinities and the existence of a water relay system for the release of reaction water molecules. Furthermore, the complexes provide the basis to rationalize the open-closed transition of a flexible loop located on the C-terminal side of the TIM-barrel. Binding of both substrate molecules to the active site seems to be a prerequisite to trigger this transition. Highly conserved mechanistically important residues in the PNP synthase family imply a similar active site organization and reaction mechanism for all family members. Due to the exclusive presence of PNP synthase in a subset of eubacteria, including several well-known pathogens, and due to its outstanding physiological importance for these organisms, the enzyme appears to be a promising novel target for antibacterial drug design.
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 
    <text>to colour the structure by Evolutionary Conservation</text>
==About this Structure==
  </jmolCheckbox>
1IXQ is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IXQ OCA].  
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ixq ConSurf].
 
<div style="clear:both"></div>
==Reference==
== References ==
Enzyme-ligand complexes of pyridoxine 5'-phosphate synthase: implications for substrate binding and catalysis., Garrido-Franco M, Laber B, Huber R, Clausen T, J Mol Biol. 2002 Aug 23;321(4):601-12. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12206776 12206776]
<references/>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Clausen, T.]]
[[Category: Clausen T]]
[[Category: Garrido-Franco, M.]]
[[Category: Garrido-Franco M]]
[[Category: Huber, R.]]
[[Category: Huber R]]
[[Category: Laber, B.]]
[[Category: Laber B]]
[[Category: enzyme-ligand complex]]
[[Category: open-closed transition]]
[[Category: tim barrel]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 21:26:05 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA