2hfe: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hfe ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hfe ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The selectivity filter of K(+) channels comprises four contiguous ion binding sites, S1 through S4. Structural and functional data indicate that the filter contains on average two K(+) ions at any given time and that these ions reside primarily in two configurations, namely to sites S1 and S3 or to sites S2 and S4. Maximum ion flux through the channel is expected to occur when the energy difference between these two binding configurations is zero. In this study, we have used protein semisynthesis to selectively perturb site 1 within the filter of the KcsA channel through use of an amide-to-ester substitution. The modification alters K(+) conduction properties. The structure of the selectivity filter is largely unperturbed by the modification, despite the loss of an ordered water molecule normally located just behind the filter. Introduction of the ester moiety was found to alter the distribution of K(+), Rb(+,) and Cs(+) within the filter, with the most dramatic change found for Rb(+). The redistribution of ions is associated with the appearance of a partially hydrated ion just external to the filter, at a position where no ion is observed in the wild-type channel. The appearance of this new ion-binding site creates a change in the distance between a pair of K(+) ions some fraction of the time, apparently leading to a reduction in the ion conduction rate. Importantly, this finding suggests that the selectivity filter of a potassium channel is optimized both in terms of absolute ion occupancy and in terms of the separation in distance between the conducting ions.
Structural and functional consequences of an amide-to-ester substitution in the selectivity filter of a potassium channel.,Valiyaveetil FI, Sekedat M, MacKinnon R, Muir TW J Am Chem Soc. 2006 Sep 6;128(35):11591-9. PMID:16939283<ref>PMID:16939283</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 2hfe" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 34: Line 25:
*[[Potassium channel 3D structures|Potassium channel 3D structures]]
*[[Potassium channel 3D structures|Potassium channel 3D structures]]
*[[3D structures of non-human antibody|3D structures of non-human antibody]]
*[[3D structures of non-human antibody|3D structures of non-human antibody]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Latest revision as of 13:15, 27 March 2024

Rb+ complex of a K channel with an amide to ester substitution in the selectivity filterRb+ complex of a K channel with an amide to ester substitution in the selectivity filter

Structural highlights

2hfe is a 4 chain structure with sequence from Mus musculus and Streptomyces coelicolor A3(2). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.25Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q569B4_RAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

2hfe, resolution 2.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA