1ezb: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURES==
==AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURES==
<StructureSection load='1ezb' size='340' side='right' caption='[[1ezb]], [[NMR_Ensembles_of_Models | 17 NMR models]]' scene=''>
<StructureSection load='1ezb' size='340' side='right'caption='[[1ezb]]' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ezb]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EZB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EZB FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ezb]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EZB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EZB FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1eza|1eza]], [[1ezc|1ezc]], [[1ezd|1ezd]]</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoenolpyruvate--protein_phosphotransferase Phosphoenolpyruvate--protein phosphotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.3.9 2.7.3.9] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ezb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ezb OCA], [https://pdbe.org/1ezb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ezb RCSB], [https://www.ebi.ac.uk/pdbsum/1ezb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ezb ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ezb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ezb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ezb RCSB], [http://www.ebi.ac.uk/pdbsum/1ezb PDBsum]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PT1_ECOLI PT1_ECOLI]] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).<ref>PMID:7876255</ref>
[https://www.uniprot.org/uniprot/PT1_ECOLI PT1_ECOLI] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).<ref>PMID:7876255</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ez/1ezb_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ez/1ezb_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ezb ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional solution structure of the 259-residue 30 kDa N-terminal domain of enzyme I (EIN) of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli has been determined by multidimensional nuclear magnetic resonance spectroscopy. Enzyme I, which is autophosphorylated by phosphoenolpyruvate, reversibly phosphorylates the phosphocarrier protein HPr, which in turn phosphorylates a group of membrane-associated proteins, known as enzymes II. To facilitate and confirm NH, 15N, and 13C assignments, extensive use was made of perdeuterated 15N- and 15N/13C-labeled protein to narrow line widths. Ninety-eight percent of the 1H, 15N, and 13C assignments for the backbone and first side chain atoms of protonated EIN were obtained using a combination of double and triple resonance correlation experiments. The structure determination was based on a total of 4251 experimental NMR restraints, and the precision of the coordinates for the final 50 simulated annealing structures is 0.79 +/- 0.18 A for the backbone atoms and 1.06 +/- 0.15 A for all atoms. The structure is ellipsoidal in shape, approximately 78 A long and 32 A wide, and comprises two domains: an alpha/beta domain (residues 1-20 and 148-230) consisting of six strands and three helices and an alpha-domain (residues 33-143) consisting of four helices. The two domains are connected by two linkers (residues 21-32 and 144-147), and in addition, at the C-terminus there is another helix which serves as a linker between the N- and C-terminal domains of intact enzyme I. A comparison with the recently solved X-ray structure of EIN [Liao, D.-I., Silverton, E., Seok, Y.-J., Lee, B. R., Peterkofsky, A., &amp; Davies, D. R. (1996) Structure 4, 861-872] indicates that there are no significant differences between the solution and crystal structures within the errors of the coordinates. The active site His189 is located in a cleft at the junction of the alpha and alpha/beta domains and has a pKa of approximately 6.3. His189 has a trans conformation about chi1, a g+ conformation about chi2, and its Nepsilon2 atom accepts a hydrogen bond from the hydroxyl proton of Thr168. Since His189 is thought to be phosphorylated at the N epsilon2 position, its side chain conformation would have to change upon phosphorylation.
Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR.,Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM Biochemistry. 1997 Mar 4;36(9):2517-30. PMID:9054557<ref>PMID:9054557</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
== References ==
<references/>
<references/>
Line 32: Line 24:
</StructureSection>
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Phosphoenolpyruvate--protein phosphotransferase]]
[[Category: Large Structures]]
[[Category: Clore, G M]]
[[Category: Clore GM]]
[[Category: Garrett, D S]]
[[Category: Garrett DS]]
[[Category: Gronenborn, A M]]
[[Category: Gronenborn AM]]
[[Category: Kinase]]
[[Category: Phosphotransferase]]
[[Category: Sugar transport]]

Latest revision as of 13:08, 20 March 2024

AMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURESAMINO TERMINAL DOMAIN OF ENZYME I FROM ESCHERICHIA COLI, NMR, 17 STRUCTURES

Structural highlights

1ezb is a 1 chain structure with sequence from Escherichia coli. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PT1_ECOLI General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH Jr, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem. 1995 Mar 3;270(9):4822-39. PMID:7876255
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA