4dm0: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==TN5 transposase: 20MER OUTSIDE END 2 MN complex==
==TN5 transposase: 20MER OUTSIDE END 2 MN complex==
<StructureSection load='4dm0' size='340' side='right' caption='[[4dm0]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
<StructureSection load='4dm0' size='340' side='right'caption='[[4dm0]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4dm0]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entries and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1l1a 1l1a]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DM0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4DM0 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4dm0]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1mur 1mur] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1l1a 1l1a]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4DM0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4DM0 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1muh|1muh]], [[1mus|1mus]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tnpA, tnp ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4dm0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dm0 OCA], [https://pdbe.org/4dm0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4dm0 RCSB], [https://www.ebi.ac.uk/pdbsum/4dm0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4dm0 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4dm0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4dm0 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4dm0 RCSB], [http://www.ebi.ac.uk/pdbsum/4dm0 PDBsum]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TN5P_ECOLX TN5P_ECOLX]] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).<ref>PMID:6260374</ref> <ref>PMID:6291786</ref> <ref>PMID:6303899</ref> <ref>PMID:1310499</ref> <ref>PMID:8226636</ref> <ref>PMID:8871560</ref> <ref>PMID:11877443</ref> <ref>PMID:12367522</ref
[https://www.uniprot.org/uniprot/TN5P_ECOLX TN5P_ECOLX] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).<ref>PMID:6260374</ref> <ref>PMID:6291786</ref> <ref>PMID:6303899</ref> <ref>PMID:1310499</ref> <ref>PMID:8226636</ref> <ref>PMID:8871560</ref> <ref>PMID:11877443</ref> <ref>PMID:12367522</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A synaptic complex of Tn5 transposase with an extended outside end DNA duplex was prepared and crystallized, and its crystal structure was determined in an effort to reveal the role of metal ions in catalysis. Two Mn2+ ions bound to the active site when a single nucleotide of donor DNA was added to the 3' end of the transferred strand. Marked conformational changes were observed in the DNA bases closest to the active site. The position of the metal ions and the conformational changes of the DNA provide insight into the mechanism of hairpin formation and cleavage, and is consistent with a two-metal model for catalysis.
 
Two-metal active site binding of a Tn5 transposase synaptic complex.,Lovell S, Goryshin IY, Reznikoff WR, Rayment I Nat Struct Biol. 2002 Apr;9(4):278-81. PMID:11896402<ref>PMID:11896402</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Transposase|Transposase]]
*[[Transposase 3D structures|Transposase 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 26: Line 18:
</StructureSection>
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Goryshin, I Y]]
[[Category: Large Structures]]
[[Category: Klenchin, V A]]
[[Category: Goryshin IY]]
[[Category: Lovell, S]]
[[Category: Klenchin VA]]
[[Category: Rayment, I]]
[[Category: Lovell S]]
[[Category: Reznikoff, W R]]
[[Category: Rayment I]]
[[Category: Dna recombination-dna complex]]
[[Category: Reznikoff WR]]
[[Category: Hydrolase-dna complex]]
[[Category: Protein-dna complex]]
[[Category: Ribonuclease h-like motif]]
[[Category: Synaptic complex]]
[[Category: Transposase]]

Latest revision as of 17:38, 14 March 2024

TN5 transposase: 20MER OUTSIDE END 2 MN complexTN5 transposase: 20MER OUTSIDE END 2 MN complex

Structural highlights

4dm0 is a 3 chain structure with sequence from Escherichia coli. This structure supersedes the now removed PDB entries 1mur and 1l1a. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TN5P_ECOLX Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).[1] [2] [3] [4] [5] [6] [7] [8]

See Also

References

  1. Rothstein SJ, Reznikoff WS. The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology. Cell. 1981 Jan;23(1):191-9. PMID:6260374
  2. Johnson RC, Yin JC, Reznikoff WS. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873-82. PMID:6291786
  3. Lowe JB, Berg DE. A product of the TN5 transposase gene inhibits transposition. Genetics. 1983 Apr;103(4):605-15. PMID:6303899
  4. Wiegand TW, Reznikoff WS. Characterization of two hypertransposing Tn5 mutants. J Bacteriol. 1992 Feb;174(4):1229-39. PMID:1310499
  5. de la Cruz NB, Weinreich MD, Wiegand TW, Krebs MP, Reznikoff WS. Characterization of the Tn5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol. 1993 Nov;175(21):6932-8. PMID:8226636
  6. York D, Reznikoff WS. Purification and biochemical analyses of a monomeric form of Tn5 transposase. Nucleic Acids Res. 1996 Oct 1;24(19):3790-6. PMID:8871560
  7. Naumann TA, Reznikoff WS. Tn5 transposase active site mutants. J Biol Chem. 2002 May 17;277(20):17623-9. Epub 2002 Mar 4. PMID:11877443 doi:10.1074/jbc.M200742200
  8. Steiniger-White M, Bhasin A, Lovell S, Rayment I, Reznikoff WS. Evidence for "unseen" transposase--DNA contacts. J Mol Biol. 2002 Oct 4;322(5):971-82. PMID:12367522

4dm0, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA