3tvc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Unreleased structure'''


The entry 3tvc is ON HOLD  until Paper Publication
==Human MMP13 in complex with L-glutamate motif inhibitor==
<StructureSection load='3tvc' size='340' side='right'caption='[[3tvc]], [[Resolution|resolution]] 2.43&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3tvc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TVC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3TVC FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.43&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=E3P:N~2~-[3-(1,1 4,1-TERPHENYL-4-YL)PROPANOYL]-L-ALPHA-GLUTAMINE'>E3P</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tvc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tvc OCA], [https://pdbe.org/3tvc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tvc RCSB], [https://www.ebi.ac.uk/pdbsum/3tvc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tvc ProSAT]</span></td></tr>
</table>
== Disease ==
[https://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN] Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:[https://omim.org/entry/602111 602111]. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.<ref>PMID:16167086</ref>  Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:[https://omim.org/entry/602111 602111]. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.<ref>PMID:19615667</ref>
== Function ==
[https://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN] Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.


Authors: Stura, E.A., Dive, V., Devel, L., Czarny, B., Beau, F., Vera, L., Cassar-Lajeunesse, E.
==See Also==
 
*[[Matrix metalloproteinase 3D structures|Matrix metalloproteinase 3D structures]]
Description: Human MMP13 in complex with L-glutamate motif inhibitor
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Beau F]]
[[Category: Cassar-Lajeunesse E]]
[[Category: Czarny B]]
[[Category: Devel L]]
[[Category: Dive V]]
[[Category: Stura EA]]
[[Category: Vera L]]

Latest revision as of 16:40, 14 March 2024

Human MMP13 in complex with L-glutamate motif inhibitorHuman MMP13 in complex with L-glutamate motif inhibitor

Structural highlights

3tvc is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.43Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MMP13_HUMAN Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:602111. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.[1] Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:602111. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.[2]

Function

MMP13_HUMAN Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.

See Also

References

  1. Kennedy AM, Inada M, Krane SM, Christie PT, Harding B, Lopez-Otin C, Sanchez LM, Pannett AA, Dearlove A, Hartley C, Byrne MH, Reed AA, Nesbit MA, Whyte MP, Thakker RV. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest. 2005 Oct;115(10):2832-42. PMID:16167086 doi:10.1172/JCI22900
  2. Lausch E, Keppler R, Hilbert K, Cormier-Daire V, Nikkel S, Nishimura G, Unger S, Spranger J, Superti-Furga A, Zabel B. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am J Hum Genet. 2009 Aug;85(2):168-78. doi: 10.1016/j.ajhg.2009.06.014. Epub 2009, Jul 16. PMID:19615667 doi:10.1016/j.ajhg.2009.06.014

3tvc, resolution 2.43Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA