|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
|
| |
|
| ==Human Cyclophilin D Complexed with an Inhibitor== | | ==Human Cyclophilin D Complexed with an Inhibitor== |
| <StructureSection load='3rdc' size='340' side='right' caption='[[3rdc]], [[Resolution|resolution]] 1.94Å' scene=''> | | <StructureSection load='3rdc' size='340' side='right'caption='[[3rdc]], [[Resolution|resolution]] 1.94Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[3rdc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RDC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RDC FirstGlance]. <br> | | <table><tr><td colspan='2'>[[3rdc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RDC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3RDC FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EA4:ETHYL+N-[(4-AMINOBENZYL)CARBAMOYL]GLYCINATE'>EA4</scene></td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.94Å</td></tr> |
| <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3r49|3r49]], [[3r4g|3r4g]], [[3r54|3r54]], [[3r56|3r56]], [[3r57|3r57]], [[3r59|3r59]], [[3rcf|3rcf]], [[3rcg|3rcg]], [[3rci|3rci]], [[3rck|3rck]], [[3rcl|3rcl]], [[3rd9|3rd9]], [[3rda|3rda]], [[3rdb|3rdb]], [[3rdd|3rdd]]</td></tr>
| | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EA4:ETHYL+N-[(4-AMINOBENZYL)CARBAMOYL]GLYCINATE'>EA4</scene></td></tr> |
| <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PPIF, CYP3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3rdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rdc OCA], [https://pdbe.org/3rdc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3rdc RCSB], [https://www.ebi.ac.uk/pdbsum/3rdc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3rdc ProSAT]</span></td></tr> |
| <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Peptidylprolyl_isomerase Peptidylprolyl isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.2.1.8 5.2.1.8] </span></td></tr>
| |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3rdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rdc OCA], [http://pdbe.org/3rdc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3rdc RCSB], [http://www.ebi.ac.uk/pdbsum/3rdc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3rdc ProSAT]</span></td></tr> | |
| </table> | | </table> |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/PPIF_HUMAN PPIF_HUMAN]] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probablity of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.<ref>PMID:19228691</ref> <ref>PMID:22726440</ref> | | [https://www.uniprot.org/uniprot/PPIF_HUMAN PPIF_HUMAN] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Involved in regulation of the mitochondrial permeability transition pore (mPTP). It is proposed that its association with the mPTP is masking a binding site for inhibiting inorganic phosphate (Pi) and promotes the open probablity of the mPTP leading to apoptosis or necrosis; the requirement of the PPIase activity for this function is debated. In cooperation with mitochondrial TP53 is involved in activating oxidative stress-induced necrosis. Involved in modulation of mitochondrial membrane F(1)F(0) ATP synthase activity and regulation of mitochondrial matrix adenine nucleotide levels. Has anti-apoptotic activity independently of mPTP and in cooperation with BCL2 inhibits cytochrome c-dependent apoptosis.<ref>PMID:19228691</ref> <ref>PMID:22726440</ref> |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| X-ray crystallography is an established technique for ligand screening in fragment-based drug-design projects, but the required manual handling steps - soaking crystals with ligand and the subsequent harvesting - are tedious and limit the throughput of the process. Here, an alternative approach is reported: crystallization plates are pre-coated with potential binders prior to protein crystallization and X-ray diffraction is performed directly `in situ' (or in-plate). Its performance is demonstrated on distinct and relevant therapeutic targets currently being studied for ligand screening by X-ray crystallography using either a bending-magnet beamline or a rotating-anode generator. The possibility of using DMSO stock solutions of the ligands to be coated opens up a route to screening most chemical libraries.
| |
| | |
| Combining `dry' co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography.,Gelin M, Delfosse V, Allemand F, Hoh F, Sallaz-Damaz Y, Pirocchi M, Bourguet W, Ferrer JL, Labesse G, Guichou JF Acta Crystallogr D Biol Crystallogr. 2015 Aug 1;71(Pt 8):1777-87. doi:, 10.1107/S1399004715010342. Epub 2015 Jul 31. PMID:26249358<ref>PMID:26249358</ref>
| |
| | |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 3rdc" style="background-color:#fffaf0;"></div>
| |
|
| |
|
| ==See Also== | | ==See Also== |
| *[[Cyclophilin|Cyclophilin]] | | *[[Cyclophilin 3D structures|Cyclophilin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Homo sapiens]] |
| [[Category: Peptidylprolyl isomerase]] | | [[Category: Large Structures]] |
| [[Category: Ahmed-Belkacem, H]] | | [[Category: Ahmed-Belkacem H]] |
| [[Category: Bessin, Y]] | | [[Category: Bessin Y]] |
| [[Category: Colliandre, L]] | | [[Category: Colliandre L]] |
| [[Category: Guichou, J F]] | | [[Category: Guichou JF]] |
| [[Category: Pawlotsky, J M]] | | [[Category: Pawlotsky JM]] |
| [[Category: Beta barrel]]
| |
| [[Category: Inhibitor]]
| |
| [[Category: Isomerase-isomerase inhibitor complex]]
| |
| [[Category: Mitochondria]]
| |
| [[Category: Prolyl cis/trans isomerase]]
| |