1ak5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) FROM TRITRICHOMONAS FOETUS==
==INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) FROM TRITRICHOMONAS FOETUS==
<StructureSection load='1ak5' size='340' side='right' caption='[[1ak5]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='1ak5' size='340' side='right'caption='[[1ak5]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ak5]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Tritrichomonas_suis Tritrichomonas suis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AK5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1AK5 FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ak5]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Tritrichomonas_suis Tritrichomonas suis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AK5 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AK5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/IMP_dehydrogenase IMP dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.205 1.1.1.205] </span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ak5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ak5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ak5 RCSB], [http://www.ebi.ac.uk/pdbsum/1ak5 PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ak5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ak5 OCA], [https://pdbe.org/1ak5 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ak5 RCSB], [https://www.ebi.ac.uk/pdbsum/1ak5 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ak5 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/IMDH_TRIFO IMDH_TRIFO]] Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism.<ref>PMID:10029522</ref>
[https://www.uniprot.org/uniprot/IMDH_TRIFO IMDH_TRIFO] Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism.<ref>PMID:10029522</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ak/1ak5_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ak/1ak5_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ak5 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in de novo guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetus in the apo form at 2.3 A resolution and the enzyme-XMP complex at 2.6 A resolution. Each monomer of this tetrameric enzyme is comprised of two domains, the largest of which includes an eight-stranded parallel beta/alpha-barrel that contains the enzyme active site at the C termini of the barrel beta-strands. A second domain, comprised of residues 102-220, is disordered in the crystal. IMPDH is expected to be active as a tetramer, since the active site cavity is formed by strands from adjacent subunits. An intrasubunit disulfide bond, seen in the crystal structure, may stabilize the protein in a less active form, as high concentrations of reducing agent have been shown to increase enzyme activity. Disorder at the active site suggests that a high degree of flexibility may be inherent in the catalytic function of IMPDH. Unlike IMPDH from other species, the T. foetus enzyme has a single arginine that is largely responsible for coordinating the substrate phosphate in the active site. This structural uniqueness may facilitate structure-based identification and design of compounds that specifically inhibit the parasite enzyme.
Crystal structure of Tritrichomonas foetus inosine-5'-monophosphate dehydrogenase and the enzyme-product complex.,Whitby FG, Luecke H, Kuhn P, Somoza JR, Huete-Perez JA, Phillips JD, Hill CP, Fletterick RJ, Wang CC Biochemistry. 1997 Sep 2;36(35):10666-74. PMID:9271497<ref>PMID:9271497</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Inosine monophosphate dehydrogenase|Inosine monophosphate dehydrogenase]]
*[[Inosine monophosphate dehydrogenase 3D structures|Inosine monophosphate dehydrogenase 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: IMP dehydrogenase]]
[[Category: Large Structures]]
[[Category: Tritrichomonas suis]]
[[Category: Tritrichomonas suis]]
[[Category: Whitby, F G]]
[[Category: Whitby FG]]
[[Category: Alpha-8-beta-8 barrel]]
[[Category: C4-tetramer]]
[[Category: Dehydrogenase]]
[[Category: Oxidoreductase]]
[[Category: Purine metabolism]]
[[Category: Tetramer]]
[[Category: Tim barrel]]

Latest revision as of 18:25, 13 March 2024

INOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) FROM TRITRICHOMONAS FOETUSINOSINE MONOPHOSPHATE DEHYDROGENASE (IMPDH) FROM TRITRICHOMONAS FOETUS

Structural highlights

1ak5 is a 1 chain structure with sequence from Tritrichomonas suis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IMDH_TRIFO Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Digits JA, Hedstrom L. Kinetic mechanism of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase. Biochemistry. 1999 Feb 23;38(8):2295-306. PMID:10029522 doi:http://dx.doi.org/10.1021/bi982305k

1ak5, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA