|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
|
| |
|
| ==ALK-5 kinase inhibitor complex== | | ==ALK-5 kinase inhibitor complex== |
| <StructureSection load='5usq' size='340' side='right' caption='[[5usq]], [[Resolution|resolution]] 2.55Å' scene=''> | | <StructureSection load='5usq' size='340' side='right'caption='[[5usq]], [[Resolution|resolution]] 2.55Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[5usq]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5USQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5USQ FirstGlance]. <br> | | <table><tr><td colspan='2'>[[5usq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5USQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5USQ FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8LY:N-[2-(5-CHLORO-2-FLUOROPHENYL)PYRIDIN-4-YL]-2-[(PIPERIDIN-4-YL)METHYL]-2H-PYRAZOLO[4,3-B]PYRIDIN-7-AMINE'>8LY</scene></td></tr> | | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.55Å</td></tr> |
| <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TGFBR1, ALK5, SKR4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=8LY:N-[2-(5-CHLORO-2-FLUOROPHENYL)PYRIDIN-4-YL]-2-[(PIPERIDIN-4-YL)METHYL]-2H-PYRAZOLO[4,3-B]PYRIDIN-7-AMINE'>8LY</scene></td></tr> |
| <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein_serine/threonine_kinase Receptor protein serine/threonine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.30 2.7.11.30] </span></td></tr>
| | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5usq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5usq OCA], [https://pdbe.org/5usq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5usq RCSB], [https://www.ebi.ac.uk/pdbsum/5usq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5usq ProSAT]</span></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5usq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5usq OCA], [http://pdbe.org/5usq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5usq RCSB], [http://www.ebi.ac.uk/pdbsum/5usq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5usq ProSAT]</span></td></tr> | |
| </table> | | </table> |
| == Disease == | | == Disease == |
| [[http://www.uniprot.org/uniprot/TGFR1_HUMAN TGFR1_HUMAN]] Defects in TGFBR1 are the cause of Loeys-Dietz syndrome type 1A (LDS1A) [MIM:[http://omim.org/entry/609192 609192]]; also known as Furlong syndrome or Loeys-Dietz aortic aneurysm syndrome (LDAS). LDS1 is an aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by arterial tortuosity and aneurysms, craniosynostosis, hypertelorism, and bifid uvula or cleft palate. Other findings include exotropy, micrognathia and retrognathia, structural brain abnormalities, intellectual deficit, congenital heart disease, translucent skin, joint hyperlaxity and aneurysm with dissection throughout the arterial tree.<ref>PMID:15731757</ref> <ref>PMID:16596670</ref> <ref>PMID:16791849</ref> <ref>PMID:19883511</ref> <ref>PMID:22113417</ref> Defects in TGFBR1 are the cause of Loeys-Dietz syndrome type 2A (LDS2A) [MIM:[http://omim.org/entry/608967 608967]]. An aortic aneurysm syndrome with widespread systemic involvement. Physical findings include prominent joint laxity, easy bruising, wide and atrophic scars, velvety and translucent skin with easily visible veins, spontaneous rupture of the spleen or bowel, diffuse arterial aneurysms and dissections, and catastrophic complications of pregnancy, including rupture of the gravid uterus and the arteries, either during pregnancy or in the immediate postpartum period. LDS2 is characterized by the absence of craniofacial abnormalities with the exception of bifid uvula that can be present in some patients. Note=TGFBR1 mutation Gln-487 has been reported to be associated with thoracic aortic aneurysms and dissection (TAAD) (PubMed:16791849). This phenotype, also known as thoracic aortic aneurysms type 5 (AAT5), is distinguised from LDS2A by having aneurysms restricted to thoracic aorta. It is unclear, however, if this condition is fulfilled in individuals bearing Gln-487 mutation, that is why they are considered as LDS2A by the OMIM resource. Defects in TGFBR1 are the cause of multiple self-healing squamous epithelioma (MSSE) [MIM:[http://omim.org/entry/132800 132800]]. A disorder characterized by multiple skin tumors that undergo spontaneous regression. Tumors appear most often on sun-exposed regions, are locally invasive, and undergo spontaneous resolution over a period of months leaving pitted scars.<ref>PMID:21358634</ref> | | [https://www.uniprot.org/uniprot/TGFR1_HUMAN TGFR1_HUMAN] Defects in TGFBR1 are the cause of Loeys-Dietz syndrome type 1A (LDS1A) [MIM:[https://omim.org/entry/609192 609192]; also known as Furlong syndrome or Loeys-Dietz aortic aneurysm syndrome (LDAS). LDS1 is an aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by arterial tortuosity and aneurysms, craniosynostosis, hypertelorism, and bifid uvula or cleft palate. Other findings include exotropy, micrognathia and retrognathia, structural brain abnormalities, intellectual deficit, congenital heart disease, translucent skin, joint hyperlaxity and aneurysm with dissection throughout the arterial tree.<ref>PMID:15731757</ref> <ref>PMID:16596670</ref> <ref>PMID:16791849</ref> <ref>PMID:19883511</ref> <ref>PMID:22113417</ref> Defects in TGFBR1 are the cause of Loeys-Dietz syndrome type 2A (LDS2A) [MIM:[https://omim.org/entry/608967 608967]. An aortic aneurysm syndrome with widespread systemic involvement. Physical findings include prominent joint laxity, easy bruising, wide and atrophic scars, velvety and translucent skin with easily visible veins, spontaneous rupture of the spleen or bowel, diffuse arterial aneurysms and dissections, and catastrophic complications of pregnancy, including rupture of the gravid uterus and the arteries, either during pregnancy or in the immediate postpartum period. LDS2 is characterized by the absence of craniofacial abnormalities with the exception of bifid uvula that can be present in some patients. Note=TGFBR1 mutation Gln-487 has been reported to be associated with thoracic aortic aneurysms and dissection (TAAD) (PubMed:16791849). This phenotype, also known as thoracic aortic aneurysms type 5 (AAT5), is distinguised from LDS2A by having aneurysms restricted to thoracic aorta. It is unclear, however, if this condition is fulfilled in individuals bearing Gln-487 mutation, that is why they are considered as LDS2A by the OMIM resource. Defects in TGFBR1 are the cause of multiple self-healing squamous epithelioma (MSSE) [MIM:[https://omim.org/entry/132800 132800]. A disorder characterized by multiple skin tumors that undergo spontaneous regression. Tumors appear most often on sun-exposed regions, are locally invasive, and undergo spontaneous resolution over a period of months leaving pitted scars.<ref>PMID:21358634</ref> |
| == Function == | | == Function == |
| [[http://www.uniprot.org/uniprot/TGFR1_HUMAN TGFR1_HUMAN]] Transmembrane serine/threonine kinase forming with the TGF-beta type II serine/threonine kinase receptor, TGFBR2, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. For instance, TGFBR1 induces TRAF6 autoubiquitination which in turn results in MAP3K7 ubiquitination and activation to trigger apoptosis. Also regulates epithelial to mesenchymal transition through a SMAD-independent signaling pathway through PARD6A phosphorylation and activation.<ref>PMID:7774578</ref> <ref>PMID:8752209</ref> <ref>PMID:8980228</ref> <ref>PMID:9346908</ref> <ref>PMID:15761148</ref> <ref>PMID:16754747</ref> <ref>PMID:18758450</ref> | | [https://www.uniprot.org/uniprot/TGFR1_HUMAN TGFR1_HUMAN] Transmembrane serine/threonine kinase forming with the TGF-beta type II serine/threonine kinase receptor, TGFBR2, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. For instance, TGFBR1 induces TRAF6 autoubiquitination which in turn results in MAP3K7 ubiquitination and activation to trigger apoptosis. Also regulates epithelial to mesenchymal transition through a SMAD-independent signaling pathway through PARD6A phosphorylation and activation.<ref>PMID:7774578</ref> <ref>PMID:8752209</ref> <ref>PMID:8980228</ref> <ref>PMID:9346908</ref> <ref>PMID:15761148</ref> <ref>PMID:16754747</ref> <ref>PMID:18758450</ref> |
| <div style="background-color:#fffaf0;">
| |
| == Publication Abstract from PubMed ==
| |
| A series of potent ALK5 inhibitors were designed using a SBDD approach and subsequently optimized to improve drug likeness. Starting with a 4-substituted quinoline screening hit, SAR was conducted using a ALK5 binding model to understand the binding site and optimize activity. The resulting inhibitors displayed excellent potency but were limited by high in vitro clearance in rat and human microsomes. Using a scaffold morphing strategy, these analogs were transformed into a related pyrazolo[4,3-b]pyridine series with improved ADME properties.
| |
|
| |
|
| Design, synthesis and optimization of 7-substituted-pyrazolo[4,3-b]pyridine ALK5 (activin receptor-like kinase 5) inhibitors.,Sabat M, Wang H, Scorah N, Lawson JD, Atienza J, Kamran R, Hixon MS, Dougan DR Bioorg Med Chem Lett. 2017 May 1;27(9):1955-1961. doi:, 10.1016/j.bmcl.2017.03.026. Epub 2017 Mar 14. PMID:28359790<ref>PMID:28359790</ref>
| | ==See Also== |
| | | *[[TGF-beta receptor 3D structures|TGF-beta receptor 3D structures]] |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| |
| </div>
| |
| <div class="pdbe-citations 5usq" style="background-color:#fffaf0;"></div>
| |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Homo sapiens]] |
| [[Category: Receptor protein serine/threonine kinase]] | | [[Category: Large Structures]] |
| [[Category: Dougan, D R]] | | [[Category: Dougan DR]] |
| [[Category: Lawson, J D]] | | [[Category: Lawson JD]] |
| [[Category: Activin receptor-like kinase 5]]
| |
| [[Category: Serine/threonine-protein kinase receptor r4]]
| |
| [[Category: Tgf-beta receptor type i]]
| |
| [[Category: Transferase-transferase inhibitor complex]]
| |