4qmh: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array==
==The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array==
<StructureSection load='4qmh' size='340' side='right' caption='[[4qmh]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
<StructureSection load='4qmh' size='340' side='right'caption='[[4qmh]], [[Resolution|resolution]] 1.65&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4qmh]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QMH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QMH FirstGlance]. <br>
<table><tr><td colspan='2'>[[4qmh]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QMH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QMH FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.652&#8491;</td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4qmi|4qmi]], [[4qmj|4qmj]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qmh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qmh OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4qmh RCSB], [http://www.ebi.ac.uk/pdbsum/4qmh PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qmh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qmh OCA], [https://pdbe.org/4qmh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qmh RCSB], [https://www.ebi.ac.uk/pdbsum/4qmh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qmh ProSAT]</span></td></tr>
<table>
</table>
<div style="background-color:#fffaf0;">
== Function ==
== Publication Abstract from PubMed ==
[https://www.uniprot.org/uniprot/MSPS_DROME MSPS_DROME] Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.<ref>PMID:10477755</ref> <ref>PMID:11433295</ref> <ref>PMID:15530399</ref> <ref>PMID:15775959</ref> <ref>PMID:16303556</ref> <ref>PMID:17889670</ref> <ref>PMID:26953351</ref> <ref>PMID:21965297</ref>  
XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed TOG domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here, we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with alpha-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. While a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse, yet positionally conserved TOG array that drives MT polymerization.
 
The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array.,Fox JC, Howard AE, Currie JD, Rogers SL, Slep KC Mol Biol Cell. 2014 Jun 25. pii: mbc.E13-08-0501. PMID:24966168<ref>PMID:24966168</ref>
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Currie, J D.]]
[[Category: Drosophila melanogaster]]
[[Category: Fox, J C.]]
[[Category: Large Structures]]
[[Category: Howard, A E.]]
[[Category: Currie JD]]
[[Category: Rogers, S L.]]
[[Category: Fox JC]]
[[Category: Slep, K C.]]
[[Category: Howard AE]]
[[Category: Protein binding]]
[[Category: Rogers SL]]
[[Category: Tog domain]]
[[Category: Slep KC]]

Latest revision as of 15:47, 1 March 2024

The XMAP215 family drives microtubule polymerization using a structurally diverse TOG arrayThe XMAP215 family drives microtubule polymerization using a structurally diverse TOG array

Structural highlights

4qmh is a 1 chain structure with sequence from Drosophila melanogaster. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.652Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MSPS_DROME Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.[1] [2] [3] [4] [5] [6] [7] [8]

References

  1. Cullen CF, Deak P, Glover DM, Ohkura H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 1999 Sep 6;146(5):1005-18. PMID:10477755
  2. Cullen CF, Ohkura H. Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol. 2001 Jul;3(7):637-42. PMID:11433295 doi:http://dx.doi.org/10.1038/35083025
  3. Moon W, Hazelrigg T. The Drosophila microtubule-associated protein mini spindles is required for cytoplasmic microtubules in oogenesis. Curr Biol. 2004 Nov 9;14(21):1957-61. PMID:15530399 doi:http://dx.doi.org/10.1016/j.cub.2004.10.023
  4. Brittle AL, Ohkura H. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J. 2005 Apr 6;24(7):1387-96. Epub 2005 Mar 17. PMID:15775959 doi:http://dx.doi.org/10.1038/sj.emboj.7600629
  5. Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD. Length control of the metaphase spindle. Curr Biol. 2005 Nov 22;15(22):1979-88. PMID:16303556 doi:10.1016/j.cub.2005.09.054
  6. Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell. 2007 Sep 21;27(6):976-91. PMID:17889670 doi:10.1016/j.molcel.2007.07.023
  7. Chen K, Koe CT, Xing ZB, Tian X, Rossi F, Wang C, Tang Q, Zong W, Hong WJ, Taneja R, Yu F, Gonzalez C, Wu C, Endow S, Wang H. Arl2- and Msps-dependent microtubule growth governs asymmetric division. J Cell Biol. 2016 Mar 14;212(6):661-76. doi: 10.1083/jcb.201503047. Epub 2016 Mar, 7. PMID:26953351 doi:http://dx.doi.org/10.1083/jcb.201503047
  8. Currie JD, Stewman S, Schimizzi G, Slep KC, Ma A, Rogers SL. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol Biol Cell. 2011 Nov;22(22):4343-61. doi: 10.1091/mbc.E11-06-0520. Epub 2011, Sep 30. PMID:21965297 doi:http://dx.doi.org/10.1091/mbc.E11-06-0520

4qmh, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA