4mcv: Difference between revisions

No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Star 12 bound to analog-sensitive Src kinase==
==Star 12 bound to analog-sensitive Src kinase==
<StructureSection load='4mcv' size='340' side='right' caption='[[4mcv]], [[Resolution|resolution]] 2.73&Aring;' scene=''>
<StructureSection load='4mcv' size='340' side='right'caption='[[4mcv]], [[Resolution|resolution]] 2.73&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4mcv]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Chick Chick]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MCV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4MCV FirstGlance]. <br>
<table><tr><td colspan='2'>[[4mcv]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4MCV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4MCV FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=29K:(7S)-12-(4-AMINOBUTYL)-7-(2-METHYLPROPYL)-6,7,12,13-TETRAHYDRO-5H-INDOLO[2,3-A]PYRROLO[3,4-C]CARBAZOL-5-ONE'>29K</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.73&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SRC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9031 CHICK])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=29K:(7S)-12-(4-AMINOBUTYL)-7-(2-METHYLPROPYL)-6,7,12,13-TETRAHYDRO-5H-INDOLO[2,3-A]PYRROLO[3,4-C]CARBAZOL-5-ONE'>29K</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4mcv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mcv OCA], [https://pdbe.org/4mcv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4mcv RCSB], [https://www.ebi.ac.uk/pdbsum/4mcv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4mcv ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4mcv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4mcv OCA], [http://pdbe.org/4mcv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4mcv RCSB], [http://www.ebi.ac.uk/pdbsum/4mcv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4mcv ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SRC_CHICK SRC_CHICK]] Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.<ref>PMID:1717492</ref> <ref>PMID:8550628</ref>
[https://www.uniprot.org/uniprot/SRC_CHICK SRC_CHICK] Non-receptor protein tyrosine kinase which is activated following engagement of many different classes of cellular receptors including immune response receptors, integrins and other adhesion receptors, receptor protein tyrosine kinases, G protein-coupled receptors as well as cytokine receptors. Participates in signaling pathways that control a diverse spectrum of biological activities including gene transcription, immune response, cell adhesion, cell cycle progression, apoptosis, migration, and transformation. Due to functional redundancy between members of the SRC kinase family, identification of the specific role of each SRC kinase is very difficult. SRC appears to be one of the primary kinases activated following engagement of receptors and plays a role in the activation of other protein tyrosine kinase (PTK) families. Receptor clustering or dimerization leads to recruitment of SRC to the receptor complexes where it phosphorylates the tyrosine residues within the receptor cytoplasmic domains. Plays an important role in the regulation of cytoskeletal organization through phosphorylation of specific substrates involved in this process. When cells adhere via focal adhesions to the extra-cellular matrix, signals are transmitted by integrins into the cell and result in tyrosine phosphorylation of a number of focal adhesion proteins, including PTK2/FAK1 and paxillin (PXN). Also active at the sites of cell-cell contact adherens junctions and at gap junctions. Implicated in the regulation of pre-mRNA-processing. Might be involved not only in mediating the transduction of mitogenic signals at the level of the plasma membrane but also in controlling progression through the cell cycle via interaction with regulatory proteins in the nucleus.<ref>PMID:1717492</ref> <ref>PMID:8550628</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Analog-sensitive (AS) kinase technology is a powerful approach for studying phospho-signaling pathways in diverse organisms and physiological processes. The key feature of this technique is that a kinase-of-interest can be mutated to sensitize it to inhibitor analogs that do not target wild-type (WT) kinases. In theory, this enables specific inhibition of any kinase in cells and in mouse models of human disease. Typically these inhibitors are identified from a small library of mole-cules based on the pyrazolopyrimidine (PP) scaffold. However, we recently identified a subset of native human kinases, including the Ephrin A kinase family, that are sensitive to commonly used PP inhibitors. In an effort to develop a bioor-thogonal AS-kinase inhibitor and to extend this technique to PP-sensitive kinases we sought an alternative inhibitor scaf-fold. Here we report the structure-based design of synthetically tractable, potent, and extremely selective AS-kinase inhibitors based on the natural product staurosporine. We demonstrate that these molecules, termed staralogs, potently target AS kinases in cells and we employ X-ray crystallography to elucidate their mechanism of efficacy. Finally, we demon-strate that staralogs target AS mutants of PP-sensitive kinases at concentrations where there is little to no inhibition of na-tive human kinases. Thus, staralogs represent a new class of AS-kinase inhibitors and a core component of the chemical genetic tool kit for probing kinase-signaling pathways.


Staurosporine-derived inhibitors broaden the scope of analog-sensitive kinase technology.,Lopez MS, Choy J, Peters U, Sos ML, Morgan DO, Shokat KM J Am Chem Soc. 2013 Oct 30. PMID:24171479<ref>PMID:24171479</ref>
==See Also==
 
*[[Tyrosine kinase 3D structures|Tyrosine kinase 3D structures]]
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4mcv" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Chick]]
[[Category: Gallus gallus]]
[[Category: Non-specific protein-tyrosine kinase]]
[[Category: Large Structures]]
[[Category: Lopez, M S]]
[[Category: Lopez MS]]
[[Category: Shokat, K M]]
[[Category: Shokat KM]]
[[Category: Kinase domain]]
[[Category: Transferase-transferase inhibitor complex]]
[[Category: Tyrosine kinase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA