4hpk: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4hpk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Hathewaya_histolytica Hathewaya histolytica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HPK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4HPK FirstGlance]. <br> | <table><tr><td colspan='2'>[[4hpk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Hathewaya_histolytica Hathewaya histolytica]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4HPK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4HPK FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.35Å</td></tr> | ||
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4hpk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hpk OCA], [https://pdbe.org/4hpk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4hpk RCSB], [https://www.ebi.ac.uk/pdbsum/4hpk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4hpk ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4hpk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4hpk OCA], [https://pdbe.org/4hpk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4hpk RCSB], [https://www.ebi.ac.uk/pdbsum/4hpk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4hpk ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/COLG_HATHI COLG_HATHI] Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). Active on soluble type I collagen, insoluble collagen, azocoll, soluble PZ-peptide (all collagenase substrates) and gelatin (PubMed:9922257). The full-length protein has collagenase activity, while the in vivo derived C-terminally truncated shorter versions only act on gelatin (PubMed:9922257). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain are also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). The activator domain (residues 119-388) and catalytic subdomain (389-670) open and close around substrate using a Gly-rich hinge (387-397), allowing digestion when the protein is closed (PubMed:21947205, PubMed:23703618). Binding of collagen requires Ca(2+) and is inhibited by EGTA; the collagen-binding domain (CBD, S3a plus S3b) specifically recognizes the triple-helical conformation made by 3 collagen protein chains in the triple-helical region (PubMed:11121400). Isolated CBD (S3a plus S3b) binds collagen fibrils and sheets of many tissues (PubMed:11913772).<ref>PMID:11121400</ref> <ref>PMID:11913772</ref> <ref>PMID:18374061</ref> <ref>PMID:18937627</ref> <ref>PMID:21947205</ref> <ref>PMID:22099748</ref> <ref>PMID:23703618</ref> <ref>PMID:24125730</ref> <ref>PMID:28820255</ref> <ref>PMID:3002446</ref> <ref>PMID:9922257</ref> | [https://www.uniprot.org/uniprot/COLG_HATHI COLG_HATHI] Clostridial collagenases are among the most efficient degraders of eukaryotic collagen known; saprophytes use collagen as a carbon source while pathogens additionally digest collagen to aid in host colonization. Has both tripeptidylcarboxypeptidase on Gly-X-Y and endopeptidase activities; the endopeptidase cuts within the triple helix region of collagen while tripeptidylcarboxypeptidase successively digests the exposed ends, thus clostridial collagenases can digest large sections of collagen (PubMed:3002446). Active on soluble type I collagen, insoluble collagen, azocoll, soluble PZ-peptide (all collagenase substrates) and gelatin (PubMed:9922257). The full-length protein has collagenase activity, while the in vivo derived C-terminally truncated shorter versions only act on gelatin (PubMed:9922257). In vitro digestion of soluble calf skin collagen fibrils requires both ColG and ColH; ColG forms missing the second collagen-binding domain are also synergistic with ColH, although their overall efficiency is decreased (PubMed:18374061, PubMed:22099748). The activator domain (residues 119-388) and catalytic subdomain (389-670) open and close around substrate using a Gly-rich hinge (387-397), allowing digestion when the protein is closed (PubMed:21947205, PubMed:23703618). Binding of collagen requires Ca(2+) and is inhibited by EGTA; the collagen-binding domain (CBD, S3a plus S3b) specifically recognizes the triple-helical conformation made by 3 collagen protein chains in the triple-helical region (PubMed:11121400). Isolated CBD (S3a plus S3b) binds collagen fibrils and sheets of many tissues (PubMed:11913772).<ref>PMID:11121400</ref> <ref>PMID:11913772</ref> <ref>PMID:18374061</ref> <ref>PMID:18937627</ref> <ref>PMID:21947205</ref> <ref>PMID:22099748</ref> <ref>PMID:23703618</ref> <ref>PMID:24125730</ref> <ref>PMID:28820255</ref> <ref>PMID:3002446</ref> <ref>PMID:9922257</ref> | ||
==See Also== | ==See Also== |