4fdd: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:


==Crystal structure of KAP beta2-PY-NLS==
==Crystal structure of KAP beta2-PY-NLS==
<StructureSection load='4fdd' size='340' side='right' caption='[[4fdd]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='4fdd' size='340' side='right'caption='[[4fdd]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4fdd]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FDD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4FDD FirstGlance]. <br>
<table><tr><td colspan='2'>[[4fdd]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FDD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FDD FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2qmr|2qmr]], [[2ot8|2ot8]], [[2h4m|2h4m]], [[1qbk|1qbk]]</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">KPNB2, MIP1, TNPO1, Transportin-1, TRN ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), FUS, TLS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fdd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fdd OCA], [https://pdbe.org/4fdd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fdd RCSB], [https://www.ebi.ac.uk/pdbsum/4fdd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fdd ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4fdd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fdd OCA], [http://pdbe.org/4fdd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4fdd RCSB], [http://www.ebi.ac.uk/pdbsum/4fdd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4fdd ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/FUS_HUMAN FUS_HUMAN]] Frontotemporal dementia with motor neuron disease;Hereditary essential tremor;Amyotrophic lateral sclerosis;Juvenile amyotrophic lateral sclerosis;Myxofibrosarcoma;Myxoid/round cell liposarcoma. A chromosomal aberration involving FUS is found in a patient with malignant myxoid liposarcoma. Translocation t(12;16)(q13;p11) with DDIT3.  A chromosomal aberration involving FUS is a cause of acute myeloid leukemia (AML). Translocation t(16;21)(p11;q22) with ERG.  The disease may be caused by mutations affecting the gene represented in this entry. A chromosomal aberration involving FUS is found in a patient with angiomatoid fibrous histiocytoma. Translocation t(12;16)(q13;p11.2) with ATF1 generates a chimeric FUS/ATF1 protein.  The disease is caused by mutations affecting the gene represented in this entry.  The disease is caused by mutations affecting the gene represented in this entry.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/TNPO1_HUMAN TNPO1_HUMAN]] Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Appears also to be involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5. Binds to a beta-like import receptor binding (BIB) domain of RPL23A. In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones, and SRP19. In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. Mediates nuclear import of ADAR/ADAR1 (isoform 5) in a RanGTP-dependent manner.<ref>PMID:8986607</ref> <ref>PMID:9687515</ref> <ref>PMID:11682607</ref> <ref>PMID:19124606</ref> [[http://www.uniprot.org/uniprot/FUS_HUMAN FUS_HUMAN]] Binds both single-stranded and double-stranded DNA and promotes ATP-independent annealing of complementary single-stranded DNAs and D-loop formation in superhelical double-stranded DNA. May play a role in maintenance of genomic integrity.
[https://www.uniprot.org/uniprot/TNPO1_HUMAN TNPO1_HUMAN] Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Appears also to be involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5. Binds to a beta-like import receptor binding (BIB) domain of RPL23A. In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones, and SRP19. In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. Mediates nuclear import of ADAR/ADAR1 (isoform 5) in a RanGTP-dependent manner.<ref>PMID:8986607</ref> <ref>PMID:9687515</ref> <ref>PMID:11682607</ref> <ref>PMID:19124606</ref>  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mutations in the proline/tyrosine-nuclear localization signal (PY-NLS) of the Fused in Sarcoma protein (FUS) cause amyotrophic lateral sclerosis (ALS). Here we report the crystal structure of the FUS PY-NLS bound to its nuclear import receptor Karyopherinbeta2 (Kapbeta2; also known as Transportin). The FUS PY-NLS occupies the structurally invariant C-terminal arch of Kapbeta2, tracing a path similar to that of other characterized PY-NLSs. Unlike other PY-NLSs, which generally bind Kapbeta2 in fully extended conformations, the FUS peptide is atypical as its central portion forms a 2.5-turn alpha-helix. The Kapbeta2-binding epitopes of the FUS PY-NLS consist of an N-terminal PGKM hydrophobic motif, a central arginine-rich alpha-helix, and a C-terminal PY motif. ALS mutations are found almost exclusively within these epitopes. Each ALS mutation site makes multiple contacts with Kapbeta2 and mutations of these residues decrease binding affinities for Kapbeta2 (K(D) for wild-type FUS PY-NLS is 9.5 nM) up to ninefold. Thermodynamic analyses of ALS mutations in the FUS PY-NLS show that the weakening of FUS-Kapbeta2 binding affinity, the degree of cytoplasmic mislocalization, and ALS disease severity are correlated.


Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS).,Zhang ZC, Chook YM Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12017-21. doi:, 10.1073/pnas.1207247109. Epub 2012 Jul 9. PMID:22778397<ref>PMID:22778397</ref>
==See Also==
 
*[[Importin 3D structures|Importin 3D structures]]
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 4fdd" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Chook, Y M]]
[[Category: Large Structures]]
[[Category: Zhang, Z C]]
[[Category: Chook YM]]
[[Category: Heat repeat]]
[[Category: Zhang ZC]]
[[Category: Importin]]
[[Category: Karyopherin]]
[[Category: Nuclear import]]
[[Category: Protein transport]]
[[Category: Transport protein]]
[[Category: Transportin]]

Latest revision as of 14:15, 1 March 2024

Crystal structure of KAP beta2-PY-NLSCrystal structure of KAP beta2-PY-NLS

Structural highlights

4fdd is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TNPO1_HUMAN Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Appears also to be involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5. Binds to a beta-like import receptor binding (BIB) domain of RPL23A. In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones, and SRP19. In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. Mediates nuclear import of ADAR/ADAR1 (isoform 5) in a RanGTP-dependent manner.[1] [2] [3] [4]

See Also

References

  1. Nakielny S, Siomi MC, Siomi H, Michael WM, Pollard V, Dreyfuss G. Transportin: nuclear transport receptor of a novel nuclear protein import pathway. Exp Cell Res. 1996 Dec 15;229(2):261-6. PMID:8986607 doi:10.1006/excr.1996.0369
  2. Jakel S, Gorlich D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 1998 Aug 3;17(15):4491-502. PMID:9687515 doi:10.1093/emboj/17.15.4491
  3. Dean KA, von Ahsen O, Gorlich D, Fried HM. Signal recognition particle protein 19 is imported into the nucleus by importin 8 (RanBP8) and transportin. J Cell Sci. 2001 Oct;114(Pt 19):3479-85. PMID:11682607
  4. Fritz J, Strehblow A, Taschner A, Schopoff S, Pasierbek P, Jantsch MF. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol Cell Biol. 2009 Mar;29(6):1487-97. doi: 10.1128/MCB.01519-08. Epub 2009 Jan, 5. PMID:19124606 doi:10.1128/MCB.01519-08

4fdd, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA