3dbv: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:
<StructureSection load='3dbv' size='340' side='right'caption='[[3dbv]], [[Resolution|resolution]] 2.45&Aring;' scene=''>
<StructureSection load='3dbv' size='340' side='right'caption='[[3dbv]], [[Resolution|resolution]] 2.45&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3dbv]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_12980 Atcc 12980]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DBV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DBV FirstGlance]. <br>
<table><tr><td colspan='2'>[[3dbv]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DBV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DBV FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GAP ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1422 ATCC 12980])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glyceraldehyde-3-phosphate_dehydrogenase_(phosphorylating) Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.1.12 1.2.1.12] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dbv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dbv OCA], [https://pdbe.org/3dbv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dbv RCSB], [https://www.ebi.ac.uk/pdbsum/3dbv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dbv ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dbv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dbv OCA], [https://pdbe.org/3dbv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dbv RCSB], [https://www.ebi.ac.uk/pdbsum/3dbv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dbv ProSAT]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/G3P_GEOSE G3P_GEOSE]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3dbv ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3dbv ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Mutations have been introduced in the cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus stearothermophilus in order to convert its cofactor selectivity from a specificity towards NAD into a preference for NADP. In the B-S mutant, five mutations (L33T, T34G, D35G, L187A, P188S) were selected on the basis of a sequence alignment with NADP-dependent chloroplastic GAPDHs. In the D32G-S mutant, two of the five mutations mentioned above (L187A, P188S) have been used in combination with another one designed from electrostatic considerations (D32G). Both mutants exhibit a dual-cofactor selectivity at the advantage of either NAD (B-S) or NADP (D32G-S). In order to analyse the cofactor-binding site plasticity at the molecular level, crystal structures of these mutants have been solved, when complexed with either NAD+ (D32G-Sn, resolution 2.5 A, R = 13.9%; B-Sn, 2.45 A, 19.3%) or NADP+ (D32G-Sp, 2.2 A, 19.2%; B-Sp, 2.5 A, 14.4%). The four refined models are very similar to that of the wild-type GAPDH and as expected resemble more closely the holo form than the apo form. In the B-S mutant, the wild-type low affinity for NADP+ seems to be essentially retained because of repulsive electrostatic contacts between the extra 2'-phosphate and the unchanged carboxylate group of residue D32. Such an antideterminant effect is not well compensated by putative attractive interactions which had been expected to arise from the newly-introduced side-chains. In this mutant, recognition of NAD+ is slightly affected with respect to that known on the wild-type, because mutations only weakly destabilize hydrogen bonds and van der Waals contacts originally present in the natural enzyme. Thus, the B-S mutant does not mimic efficiently the chloroplastic GAPDHs, and long-range and/or second-layer effects, not easily predictable from visual inspection of three-dimensional structures, need to be taken into account for designing a true "chloroplastic-like" mutant of cytosolic GAPDH. In the case of the D32G-S mutant, the dissociation constants for NAD+ and NADP+ are practically reversed with respect to those of the wild-type. The strong alteration of the affinity for NAD+ obviously proceeds from the suppression of the two wild-type hydrogen bonds between the adenosine 2'- and 3'-hydroxyl positions and the D32 carboxylate group. As expected, the efficient recognition of NADP+ is partly promoted by the removal of intra-subunit electrostatic repulsion (D32G) and inter-subunit steric hindrance (L187A, P188S). Another interesting feature of the reshaped NADP+-binding site is provided by the local stabilization of the extra 2'-phosphate which forms a hydrogen bond with the side-chain hydroxyl group of the newly-introduced S188. When compared to the presently known natural NADP-binding clefts, this result clearly demonstrates that an absolute need for a salt-bridge involving the 2'-phosphate is not required to switch the cofactor selectivity from NAD to NADP. In fact, as it is the case in this mutant, only a moderately polar hydrogen bond can be sufficient to make the extra 2'-phosphate of NADP+ well recognized by a protein environment.
A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.,Didierjean C, Rahuel-Clermont S, Vitoux B, Dideberg O, Branlant G, Aubry A J Mol Biol. 1997 May 16;268(4):739-59. PMID:9175858<ref>PMID:9175858</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 3dbv" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Aldehyde dehydrogenase 3D structures|Aldehyde dehydrogenase 3D structures]]
*[[Aldehyde dehydrogenase 3D structures|Aldehyde dehydrogenase 3D structures]]
*[[Glyceraldehyde-3-phosphate dehydrogenase 3D structures|Glyceraldehyde-3-phosphate dehydrogenase 3D structures]]
*[[Glyceraldehyde-3-phosphate dehydrogenase 3D structures|Glyceraldehyde-3-phosphate dehydrogenase 3D structures]]
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Atcc 12980]]
[[Category: Geobacillus stearothermophilus]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Aubry, A]]
[[Category: Aubry A]]
[[Category: Branlant, G]]
[[Category: Branlant G]]
[[Category: Dideberg, O]]
[[Category: Dideberg O]]
[[Category: Didierjean, C]]
[[Category: Didierjean C]]
[[Category: Rahuel-Clermont, S]]
[[Category: Rahuel-Clermont S]]
[[Category: Vitoux, B]]
[[Category: Vitoux B]]
[[Category: Oxidoreductase]]

Latest revision as of 12:40, 21 February 2024

GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH LEU 33 REPLACED BY THR, THR 34 REPLACED BY GLY, ASP 36 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NAD+GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE MUTANT WITH LEU 33 REPLACED BY THR, THR 34 REPLACED BY GLY, ASP 36 REPLACED BY GLY, LEU 187 REPLACED BY ALA, AND PRO 188 REPLACED BY SER COMPLEXED WITH NAD+

Structural highlights

3dbv is a 4 chain structure with sequence from Geobacillus stearothermophilus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.45Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

G3P_GEOSE

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

3dbv, resolution 2.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA