3bg1: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Architecture of a Coat for the Nuclear Pore Membrane==
==Architecture of a Coat for the Nuclear Pore Membrane==
<StructureSection load='3bg1' size='340' side='right' caption='[[3bg1]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='3bg1' size='340' side='right'caption='[[3bg1]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[3bg1]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BG1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3BG1 FirstGlance]. <br>
<table><tr><td colspan='2'>[[3bg1]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BG1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3BG1 FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3bg0|3bg0]]</td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SEC13, D3S1231E, SEC13L1, SEC13R ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), NUP145, RAT10 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3bg1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bg1 OCA], [https://pdbe.org/3bg1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3bg1 RCSB], [https://www.ebi.ac.uk/pdbsum/3bg1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3bg1 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3bg1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3bg1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3bg1 RCSB], [http://www.ebi.ac.uk/pdbsum/3bg1 PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NU145_YEAST NU145_YEAST] Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Active directional transport is assured by both, a Phe-Gly (FG) repeat affinity gradient for these transport factors across the NPC and a transport cofactor concentration gradient across the nuclear envelope (GSP1 and GSP2 GTPases associated predominantly with GTP in the nucleus, with GDP in the cytoplasm). NUP145 is autocatalytically cleaved in vivo in 2 polypeptides which assume different functions in the NPC. NUP145N as one of the FG repeat nucleoporins participates in karyopherin interactions and contains part of the autocatalytic cleavage activity. NUP145C as part of the NUP84 complex is involved in nuclear poly(A)+ RNA and tRNA export. It is also required for normal NPC distribution (probably through interactions with MLP1 and MLP2) and NPC assembly, as well as for normal nuclear envelope organization.<ref>PMID:8044840</ref> <ref>PMID:8195299</ref> <ref>PMID:8524308</ref> <ref>PMID:9305650</ref> <ref>PMID:10542288</ref> <ref>PMID:10638763</ref> <ref>PMID:11823431</ref> <ref>PMID:12604785</ref> <ref>PMID:15039779</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bg/3bg1_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bg/3bg1_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3bg1 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The symmetric core of the nuclear pore complex can be considered schematically as a series of concentric cylinders. A peripheral cylinder coating the pore membrane contains the previously characterized, elongated heptamer that harbors Sec13-Nup145C in its middle section. Strikingly, Sec13-Nup145C crystallizes as a hetero-octamer in two space groups. Oligomerization of Sec13-Nup145C was confirmed biochemically. Importantly, the numerous interacting surfaces in the hetero-octamer are evolutionarily highly conserved, further underlining the physiological relevance of the oligomerization. The hetero-octamer forms a slightly curved, yet rigid rod of sufficient length to span the entire height of the proposed membrane-adjacent cylinder. In concordance with the dimensions and symmetry of the nuclear pore complex core, we suggest that the cylinder is constructed of four antiparallel rings, each ring being composed of eight heptamers arranged in a head-to-tail fashion. Our model proposes that the hetero-octamer would vertically traverse and connect the four stacked rings.
Architecture of a coat for the nuclear pore membrane.,Hsia KC, Stavropoulos P, Blobel G, Hoelz A Cell. 2007 Dec 28;131(7):1313-26. PMID:18160040<ref>PMID:18160040</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Nucleoporin|Nucleoporin]]
*[[Nucleoporin 3D structures|Nucleoporin 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 33: Line 27:
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Saccharomyces cerevisiae]]
[[Category: Hoelz, A.]]
[[Category: Hoelz A]]
[[Category: Autocatalytic cleavage]]
[[Category: Hydrolase]]
[[Category: Mrna transport]]
[[Category: Npc]]
[[Category: Nuclear pore complex]]
[[Category: Nucleus]]
[[Category: Phosphoprotein]]
[[Category: Protein transport]]
[[Category: Rna-binding]]
[[Category: Translocation]]
[[Category: Transport]]
[[Category: Wd repeat]]

Latest revision as of 12:28, 21 February 2024

Architecture of a Coat for the Nuclear Pore MembraneArchitecture of a Coat for the Nuclear Pore Membrane

Structural highlights

3bg1 is a 8 chain structure with sequence from Homo sapiens and Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NU145_YEAST Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. Active directional transport is assured by both, a Phe-Gly (FG) repeat affinity gradient for these transport factors across the NPC and a transport cofactor concentration gradient across the nuclear envelope (GSP1 and GSP2 GTPases associated predominantly with GTP in the nucleus, with GDP in the cytoplasm). NUP145 is autocatalytically cleaved in vivo in 2 polypeptides which assume different functions in the NPC. NUP145N as one of the FG repeat nucleoporins participates in karyopherin interactions and contains part of the autocatalytic cleavage activity. NUP145C as part of the NUP84 complex is involved in nuclear poly(A)+ RNA and tRNA export. It is also required for normal NPC distribution (probably through interactions with MLP1 and MLP2) and NPC assembly, as well as for normal nuclear envelope organization.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC. Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell. 1994 Jul 29;78(2):275-89. PMID:8044840
  2. Wente SR, Blobel G. NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure. J Cell Biol. 1994 Jun;125(5):955-69. PMID:8195299
  3. Sharma K, Fabre E, Tekotte H, Hurt EC, Tollervey D. Yeast nucleoporin mutants are defective in pre-tRNA splicing. Mol Cell Biol. 1996 Jan;16(1):294-301. PMID:8524308
  4. Teixeira MT, Siniossoglou S, Podtelejnikov S, Benichou JC, Mann M, Dujon B, Hurt E, Fabre E. Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J. 1997 Aug 15;16(16):5086-97. PMID:9305650 doi:10.1093/emboj/16.16.5086
  5. Teixeira MT, Fabre E, Dujon B. Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor. J Biol Chem. 1999 Nov 5;274(45):32439-44. PMID:10542288
  6. Galy V, Olivo-Marin JC, Scherthan H, Doye V, Rascalou N, Nehrbass U. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature. 2000 Jan 6;403(6765):108-12. PMID:10638763 doi:10.1038/47528
  7. Lutzmann M, Kunze R, Buerer A, Aebi U, Hurt E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 2002 Feb 1;21(3):387-97. PMID:11823431 doi:10.1093/emboj/21.3.387
  8. Denning DP, Patel SS, Uversky V, Fink AL, Rexach M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2450-5. Epub 2003 Feb 25. PMID:12604785 doi:10.1073/pnas.0437902100
  9. Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol. 2004 Mar;6(3):197-206. Epub 2004 Feb 22. PMID:15039779 doi:10.1038/ncb1097

3bg1, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA