2fju: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:2fju.gif|left|200px]]


{{Structure
==Activated Rac1 bound to its effector phospholipase C beta 2==
|PDB= 2fju |SIZE=350|CAPTION= <scene name='initialview01'>2fju</scene>, resolution 2.20&Aring;
<StructureSection load='2fju' size='340' side='right'caption='[[2fju]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
|SITE=
== Structural highlights ==
|LIGAND= <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene> and <scene name='pdbligand=GSP:5'-GUANOSINE-DIPHOSPHATE-MONOTHIOPHOSPHATE'>GSP</scene>
<table><tr><td colspan='2'>[[2fju]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FJU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2FJU FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Phosphoinositide_phospholipase_C Phosphoinositide phospholipase C], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.4.11 3.1.4.11]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
|GENE= RAC1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), PLCB2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GSP:5-GUANOSINE-DIPHOSPHATE-MONOTHIOPHOSPHATE'>GSP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2fju FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2fju OCA], [https://pdbe.org/2fju PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2fju RCSB], [https://www.ebi.ac.uk/pdbsum/2fju PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2fju ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/RAC1_HUMAN RAC1_HUMAN] Plasma membrane-associated small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate cellular responses such as secretory processes, phagocytosis of apoptotic cells, epithelial cell polarization and growth-factor induced formation of membrane ruffles. Rac1 p21/rho GDI heterodimer is the active component of the cytosolic factor sigma 1, which is involved in stimulation of the NADPH oxidase activity in macrophages (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. Stimulates PKN2 kinase activity. In concert with RAB7A, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. In glioma cells, promotes cell migration and invasion.<ref>PMID:1643658</ref> <ref>PMID:9121475</ref> <ref>PMID:19934221</ref> <ref>PMID:19403692</ref> <ref>PMID:20696765</ref>  Isoform B has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. It is able to bind to the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction.<ref>PMID:1643658</ref> <ref>PMID:9121475</ref> <ref>PMID:19934221</ref> <ref>PMID:19403692</ref> <ref>PMID:20696765</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fj/2fju_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2fju ConSurf].
<div style="clear:both"></div>


'''Activated Rac1 bound to its effector phospholipase C beta 2'''
==See Also==
 
*[[Phospholipase C|Phospholipase C]]
 
*[[Rac 3D structures|Rac 3D structures]]
==Overview==
== References ==
Although diverse signaling cascades require the coordinated regulation of heterotrimeric G proteins and small GTPases, these connections remain poorly understood. We present the crystal structure of the GTPase Rac1 bound to phospholipase C-beta2 (PLC-beta2), a classic effector of heterotrimeric G proteins. Rac1 engages the pleckstrin-homology (PH) domain of PLC-beta2 to optimize its orientation for substrate membranes. Gbetagamma also engages the PH domain to activate PLC-beta2, and these two activation events are compatible, leading to additive stimulation of phospholipase activity. In contrast to PLC-delta, the PH domain of PLC-beta2 cannot bind phosphoinositides, eliminating this mode of regulation. The structure of the Rac1-PLC-beta2 complex reveals determinants that dictate selectivity of PLC-beta isozymes for Rac GTPases over other Rho-family GTPases, and substitutions within PLC-beta2 abrogate its stimulation by Rac1 but not by Gbetagamma, allowing for functional dissection of this integral signaling node.
<references/>
 
__TOC__
==Disease==
</StructureSection>
Known disease associated with this structure: Platelet PLC beta-2 deficiency OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=604114 604114]]
 
==About this Structure==
2FJU is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FJU OCA].
 
==Reference==
Crystal structure of Rac1 bound to its effector phospholipase C-beta2., Jezyk MR, Snyder JT, Gershberg S, Worthylake DK, Harden TK, Sondek J, Nat Struct Mol Biol. 2006 Dec;13(12):1135-40. Epub 2006 Nov 19. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/17115053 17115053]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Phosphoinositide phospholipase C]]
[[Category: Large Structures]]
[[Category: Protein complex]]
[[Category: Harden TK]]
[[Category: Harden, T K.]]
[[Category: Jezyk MR]]
[[Category: Jezyk, M R.]]
[[Category: Snyder JT]]
[[Category: Snyder, J T.]]
[[Category: Sondek J]]
[[Category: Sondek, J.]]
[[Category: CA]]
[[Category: GSP]]
[[Category: MG]]
[[Category: protein-protein complex]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 16:53:14 2008''

Latest revision as of 12:23, 14 February 2024

Activated Rac1 bound to its effector phospholipase C beta 2Activated Rac1 bound to its effector phospholipase C beta 2

Structural highlights

2fju is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RAC1_HUMAN Plasma membrane-associated small GTPase which cycles between active GTP-bound and inactive GDP-bound states. In its active state, binds to a variety of effector proteins to regulate cellular responses such as secretory processes, phagocytosis of apoptotic cells, epithelial cell polarization and growth-factor induced formation of membrane ruffles. Rac1 p21/rho GDI heterodimer is the active component of the cytosolic factor sigma 1, which is involved in stimulation of the NADPH oxidase activity in macrophages (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. Stimulates PKN2 kinase activity. In concert with RAB7A, plays a role in regulating the formation of RBs (ruffled borders) in osteoclasts. In glioma cells, promotes cell migration and invasion.[1] [2] [3] [4] [5] Isoform B has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. It is able to bind to the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction.[6] [7] [8] [9] [10]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401-10. PMID:1643658
  2. Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 1997 Apr;17(4):2247-56. PMID:9121475
  3. Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009 Dec 15;122(Pt 24):4535-46. doi: 10.1242/jcs.053728. Epub 2009, Nov 24. PMID:19934221 doi:10.1242/jcs.053728
  4. Hamill KJ, Hopkinson SB, DeBiase P, Jones JC. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol Biol Cell. 2009 Jun;20(12):2954-62. doi: 10.1091/mbc.E09-01-0051. Epub 2009, Apr 29. PMID:19403692 doi:10.1091/mbc.E09-01-0051
  5. Li X, Lee AY. Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem. 2010 Oct 15;285(42):32436-45. doi: 10.1074/jbc.M110.120451. Epub, 2010 Aug 9. PMID:20696765 doi:10.1074/jbc.M110.120451
  6. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401-10. PMID:1643658
  7. Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 1997 Apr;17(4):2247-56. PMID:9121475
  8. Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009 Dec 15;122(Pt 24):4535-46. doi: 10.1242/jcs.053728. Epub 2009, Nov 24. PMID:19934221 doi:10.1242/jcs.053728
  9. Hamill KJ, Hopkinson SB, DeBiase P, Jones JC. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol Biol Cell. 2009 Jun;20(12):2954-62. doi: 10.1091/mbc.E09-01-0051. Epub 2009, Apr 29. PMID:19403692 doi:10.1091/mbc.E09-01-0051
  10. Li X, Lee AY. Semaphorin 5A and plexin-B3 inhibit human glioma cell motility through RhoGDIalpha-mediated inactivation of Rac1 GTPase. J Biol Chem. 2010 Oct 15;285(42):32436-45. doi: 10.1074/jbc.M110.120451. Epub, 2010 Aug 9. PMID:20696765 doi:10.1074/jbc.M110.120451

2fju, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA