2adq: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Human Manganese Superoxide Dismutase==
==Human Manganese Superoxide Dismutase==
<StructureSection load='2adq' size='340' side='right' caption='[[2adq]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='2adq' size='340' side='right'caption='[[2adq]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[2adq]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ADQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ADQ FirstGlance]. <br>
<table><tr><td colspan='2'>[[2adq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ADQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ADQ FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SOD2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Superoxide_dismutase Superoxide dismutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.15.1.1 1.15.1.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2adq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2adq OCA], [https://pdbe.org/2adq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2adq RCSB], [https://www.ebi.ac.uk/pdbsum/2adq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2adq ProSAT]</span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2adq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2adq OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2adq RCSB], [http://www.ebi.ac.uk/pdbsum/2adq PDBsum]</span></td></tr>
</table>
<table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/SODM_HUMAN SODM_HUMAN]] Genetic variation in SOD2 is associated with susceptibility to microvascular complications of diabetes type 6 (MVCD6) [MIM:[http://omim.org/entry/612634 612634]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.  
[https://www.uniprot.org/uniprot/SODM_HUMAN SODM_HUMAN] Genetic variation in SOD2 is associated with susceptibility to microvascular complications of diabetes type 6 (MVCD6) [MIM:[https://omim.org/entry/612634 612634]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SODM_HUMAN SODM_HUMAN]] Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems.<ref>PMID:10334867</ref>
[https://www.uniprot.org/uniprot/SODM_HUMAN SODM_HUMAN] Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems.<ref>PMID:10334867</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ad/2adq_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ad/2adq_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2adq ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.
Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation.,Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN Free Radic Biol Med. 2006 Feb 1;40(3):453-8. Epub 2005 Nov 9. PMID:16443160<ref>PMID:16443160</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Nitrotyrosine|Nitrotyrosine]]
*[[Superoxide Dismutase|Superoxide Dismutase]]
*[[Superoxide Dismutase|Superoxide Dismutase]]
*[[Superoxide dismutase 3D structures|Superoxide dismutase 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 39: Line 31:
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Superoxide dismutase]]
[[Category: Large Structures]]
[[Category: McKenna, R.]]
[[Category: McKenna R]]
[[Category: Mikulski, R.]]
[[Category: Mikulski R]]
[[Category: Quint, P.]]
[[Category: Quint P]]
[[Category: Reutzel, R.]]
[[Category: Reutzel R]]
[[Category: Silverman, D N.]]
[[Category: Silverman DN]]
[[Category: Cancer]]
[[Category: Free radical]]
[[Category: Oxidoreductase]]
[[Category: Proton shuttle]]

Latest revision as of 12:12, 14 February 2024

Human Manganese Superoxide DismutaseHuman Manganese Superoxide Dismutase

Structural highlights

2adq is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

SODM_HUMAN Genetic variation in SOD2 is associated with susceptibility to microvascular complications of diabetes type 6 (MVCD6) [MIM:612634. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.

Function

SODM_HUMAN Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys. 1999 Jun 1;366(1):82-8. PMID:10334867 doi:S0003-9861(99)91202-X

2adq, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA