1xva: Difference between revisions

No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1xva.gif|left|200px]]<br /><applet load="1xva" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1xva, resolution 2.2&Aring;" />
'''METHYLTRANSFERASE'''<br />


==Overview==
==METHYLTRANSFERASE==
Glycine N-methyltransferase (GNMT) from rat liver is a tetrameric enzyme with 292 amino acid residues in each identical subunit and catalyzes the S-adenosylmethionine (AdoMet) dependent methylation of glycine to form sarcosine. The crystal structure of GNMT complexed with AdoMet and acetate, a competitive inhibitor of glycine, has been determined at 2.2 A resolution. The subunit of GNMT forms a spherical shape with an extended N-terminal region which corks the entrance of active site of the adjacent subunit. The active site is located in the near center of the spherical subunit. As a result, the AdoMet and acetate in the active site are completely surrounded by amino acid residues. Careful examination of the structure reveals several characteristics of GNMT. (1) Although the structure of the AdoMet binding domain of the GNMT is very similar to those of other methyltransferases recently determined by X-ray diffraction method, an additional domain found only in GNMT encloses the active site to form a molecular basket, and consequently the structure of GNMT looks quite different from those of other methyltransferases. (2) This unique molecular structure can explain why GNMT can capture folate and polycyclic aromatic hydrocarbons. (3) The unique N-terminal conformation and the subunit structure can explain why GNMT exhibits positive cooperativity in binding AdoMet. From the structural features of GNMT, we propose that the enzyme might be able to capture yet unidentified molecules in the cytosol and thus participates in various biological processes including detoxification of polycyclic aromatic hydrocarbons. In the active site, acetate binds near the S-CH3 moiety of AdoMet. Simple modeling indicates that the amino group of the substrate glycine can be placed close to the methyl group of AdoMet within 3.0 A and form a hydrogen bond with the carboxyl group of Glu15 of the adjacent subunit. On the basis of the ternary complex structure, the mechanism of the methyl transfer in GNMT has been proposed.
<StructureSection load='1xva' size='340' side='right'caption='[[1xva]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
 
== Structural highlights ==
==About this Structure==
<table><tr><td colspan='2'>[[1xva]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XVA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XVA FirstGlance]. <br>
1XVA is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] with <scene name='pdbligand=ACT:'>ACT</scene> and <scene name='pdbligand=SAM:'>SAM</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Glycine_N-methyltransferase Glycine N-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.20 2.1.1.20] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XVA OCA].
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2&#8491;</td></tr>
 
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=SAM:S-ADENOSYLMETHIONINE'>SAM</scene></td></tr>
==Reference==
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xva FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xva OCA], [https://pdbe.org/1xva PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xva RCSB], [https://www.ebi.ac.uk/pdbsum/1xva PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xva ProSAT]</span></td></tr>
Crystal structure of glycine N-methyltransferase from rat liver., Fu Z, Hu Y, Konishi K, Takata Y, Ogawa H, Gomi T, Fujioka M, Takusagawa F, Biochemistry. 1996 Sep 17;35(37):11985-93. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=8810903 8810903]
</table>
== Function ==
[https://www.uniprot.org/uniprot/GNMT_RAT GNMT_RAT] Catalyzes the methylation of glycine by using S-adenosylmethionine (AdoMet) to form N-methylglycine (sarcosine) with the concomitant production of S-adenosylhomocysteine (AdoHcy). Possible crucial role in the regulation of tissue concentration of AdoMet and of metabolism of methionine.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xv/1xva_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xva ConSurf].
<div style="clear:both"></div>
__TOC__
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Glycine N-methyltransferase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Fu Z]]
[[Category: Fu, Z.]]
[[Category: Fujioka M]]
[[Category: Fujioka, M.]]
[[Category: Gomi T]]
[[Category: Gomi, T.]]
[[Category: Hu Y]]
[[Category: Hu, Y.]]
[[Category: Konishi K]]
[[Category: Konishi, K.]]
[[Category: Ogawa H]]
[[Category: Ogawa, H.]]
[[Category: Takata Y]]
[[Category: Takata, Y.]]
[[Category: Takusagawa F]]
[[Category: Takusagawa, F.]]
[[Category: ACT]]
[[Category: SAM]]
[[Category: methyltransferase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 15:59:02 2008''

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA