1xoi: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
<StructureSection load='1xoi' size='340' side='right'caption='[[1xoi]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
<StructureSection load='1xoi' size='340' side='right'caption='[[1xoi]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1xoi]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XOI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1XOI FirstGlance]. <br>
<table><tr><td colspan='2'>[[1xoi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XOI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XOI FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=288:5-CHLORO-1H-INDOLE-2-CARBOXYLIC+ACID{[CYCLOPENTYL-(2-HYDROXY-ETHYL)-CARBAMOYL]-METHYL}-AMIDE'>288</scene>, <scene name='pdbligand=NBG:1-N-ACETYL-BETA-D-GLUCOSAMINE'>NBG</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1em6|1em6]], [[1exv|1exv]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=288:5-CHLORO-1H-INDOLE-2-CARBOXYLIC+ACID{[CYCLOPENTYL-(2-HYDROXY-ETHYL)-CARBAMOYL]-METHYL}-AMIDE'>288</scene>, <scene name='pdbligand=NBG:1-N-ACETYL-BETA-D-GLUCOSAMINE'>NBG</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphorylase Phosphorylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.1 2.4.1.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xoi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xoi OCA], [https://pdbe.org/1xoi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xoi RCSB], [https://www.ebi.ac.uk/pdbsum/1xoi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xoi ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1xoi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xoi OCA], [http://pdbe.org/1xoi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1xoi RCSB], [http://www.ebi.ac.uk/pdbsum/1xoi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1xoi ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/PYGL_HUMAN PYGL_HUMAN]] Defects in PYGL are the cause of glycogen storage disease type 6 (GSD6) [MIM:[http://omim.org/entry/232700 232700]]. A metabolic disorder characterized by mild to moderate hypoglycemia, mild ketosis, growth retardation, and prominent hepatomegaly. Heart and skeletal muscle are not affected.<ref>PMID:9529348</ref>
[https://www.uniprot.org/uniprot/PYGL_HUMAN PYGL_HUMAN] Defects in PYGL are the cause of glycogen storage disease type 6 (GSD6) [MIM:[https://omim.org/entry/232700 232700]. A metabolic disorder characterized by mild to moderate hypoglycemia, mild ketosis, growth retardation, and prominent hepatomegaly. Heart and skeletal muscle are not affected.<ref>PMID:9529348</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PYGL_HUMAN PYGL_HUMAN]] Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties.  
[https://www.uniprot.org/uniprot/PYGL_HUMAN PYGL_HUMAN] Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 23: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xoi ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1xoi ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The synthesis, in vitro, and in vivo biological characterization of a series of achiral 5-chloroindoloyl glycine amide inhibitors of human liver glycogen phosphorylase A are described. Improved potency over previously reported compounds in cellular and in vivo assays was observed. The allosteric binding site of these compounds was shown by X-ray crystallography to be the same as that reported previously for 5-chloroindoloyl norstatine amides.
5-Chloroindoloyl glycine amide inhibitors of glycogen phosphorylase: synthesis, in vitro, in vivo, and X-ray crystallographic characterization.,Wright SW, Rath VL, Genereux PE, Hageman DL, Levy CB, McClure LD, McCoid SC, McPherson RK, Schelhorn TM, Wilder DE, Zavadoski WJ, Gibbs EM, Treadway JL Bioorg Med Chem Lett. 2005 Jan 17;15(2):459-65. PMID:15603973<ref>PMID:15603973</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1xoi" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
Line 39: Line 29:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Phosphorylase]]
[[Category: Gibbs EM]]
[[Category: Gibbs, E M]]
[[Category: Rath VL]]
[[Category: Rath, V L]]
[[Category: Treadway JL]]
[[Category: Treadway, J L]]
[[Category: Wright SW]]
[[Category: Wright, S W]]
[[Category: Allosteric enzyme]]
[[Category: Glycogen storage disease]]
[[Category: Glycosyltransferase]]
[[Category: Transferase]]

Latest revision as of 11:52, 14 February 2024

Human Liver Glycogen Phosphorylase A complexed with Chloroindoloyl glycine amideHuman Liver Glycogen Phosphorylase A complexed with Chloroindoloyl glycine amide

Structural highlights

1xoi is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PYGL_HUMAN Defects in PYGL are the cause of glycogen storage disease type 6 (GSD6) [MIM:232700. A metabolic disorder characterized by mild to moderate hypoglycemia, mild ketosis, growth retardation, and prominent hepatomegaly. Heart and skeletal muscle are not affected.[1]

Function

PYGL_HUMAN Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Burwinkel B, Bakker HD, Herschkovitz E, Moses SW, Shin YS, Kilimann MW. Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet. 1998 Apr;62(4):785-91. PMID:9529348

1xoi, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA