1u9r: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1u9r.gif|left|200px]]


<!--
==Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature==
The line below this paragraph, containing "STRUCTURE_1u9r", creates the "Structure Box" on the page.
<StructureSection load='1u9r' size='340' side='right'caption='[[1u9r]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1u9r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U9R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1U9R FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1u9r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u9r OCA], [https://pdbe.org/1u9r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1u9r RCSB], [https://www.ebi.ac.uk/pdbsum/1u9r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1u9r ProSAT]</span></td></tr>
{{STRUCTURE_1u9r| PDB=1u9r |  SCENE= }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/NUC_STAAU NUC_STAAU] Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u9/1u9r_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1u9r ConSurf].
<div style="clear:both"></div>


'''Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature'''
==See Also==
 
*[[Staphylococcal nuclease 3D structures|Staphylococcal nuclease 3D structures]]
 
__TOC__
==Overview==
</StructureSection>
The ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar medium, other stabilizing factors must be invoked, such as ionization-induced water penetration or structural changes. To examine the role of water penetration, we have measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E and V66K mutants of staphylococcal nuclease, where glutamic acid and lysine residues are buried in predominantly apolar environments. At neutral pH, where these residues are uncharged, we find no evidence of buried water molecules near the mutation site. This contrasts with a previous cryogenic crystal structure of the V66E mutant, but is consistent with the room-temperature crystal structure reported here. MRD measurements at different pH values show that ionization of Glu-66 or Lys-66 is not accompanied by penetration of long-lived water molecules. On the other hand, the MRD data are consistent with a local conformational change in response to ionization of the internal residues.
[[Category: Large Structures]]
 
==About this Structure==
1U9R is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U9R OCA].
 
==Reference==
Stabilization of internal charges in a protein: water penetration or conformational change?, Denisov VP, Schlessman JL, Garcia-Moreno E B, Halle B, Biophys J. 2004 Dec;87(6):3982-94. Epub 2004 Sep 17. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/15377517 15377517]
[[Category: Micrococcal nuclease]]
[[Category: Single protein]]
[[Category: Staphylococcus aureus]]
[[Category: Staphylococcus aureus]]
[[Category: Denisov, V P.]]
[[Category: Denisov VP]]
[[Category: Garcia-Moreno, B E.]]
[[Category: Garcia-Moreno BE]]
[[Category: Halle, B.]]
[[Category: Halle B]]
[[Category: Schlessman, J L.]]
[[Category: Schlessman JL]]
[[Category: Hyperstable variant]]
[[Category: Internal water]]
[[Category: Nuclease]]
[[Category: Staphylococcal nuclease]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 10:56:36 2008''

Latest revision as of 11:44, 14 February 2024

Crystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room TemperatureCrystal Structure of Staphylococcal Nuclease mutant V66E/P117G/H124L/S128A at Room Temperature

Structural highlights

1u9r is a 1 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NUC_STAAU Enzyme that catalyzes the hydrolysis of both DNA and RNA at the 5' position of the phosphodiester bond.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

1u9r, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA