1mnf: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1mnf.gif|left|200px]]


<!--
==Domain motions in GroEL upon binding of an oligopeptide==
The line below this paragraph, containing "STRUCTURE_1mnf", creates the "Structure Box" on the page.
<StructureSection load='1mnf' size='340' side='right'caption='[[1mnf]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1mnf]] is a 28 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MNF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1MNF FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
-->
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1mnf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mnf OCA], [https://pdbe.org/1mnf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1mnf RCSB], [https://www.ebi.ac.uk/pdbsum/1mnf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1mnf ProSAT]</span></td></tr>
{{STRUCTURE_1mnf| PDB=1mnf |  SCENE= }}
</table>
== Function ==
[https://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600]  Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600]
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mn/1mnf_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mnf ConSurf].
<div style="clear:both"></div>


'''Domain motions in GroEL upon binding of an oligopeptide'''
==See Also==
 
*[[Chaperonin 3D structures|Chaperonin 3D structures]]
 
__TOC__
==Overview==
</StructureSection>
GroEL assists protein folding by preventing the interaction of partially folded molecules with other non-native proteins. It binds them, sequesters them, and then releases them so that they can fold in an ATP-driven cycle. Previous studies have also shown that protein substrates, GroES, and oligopeptides bind to partially overlapped sites on the apical domain surfaces of GroEL. In this study, we have determined the crystal structure at 3.0A resolution of a symmetric (GroEL-peptide)(14) complex. The binding of each of these small 12 amino acid residue peptides to GroEL involves interactions between three adjacent apical domains of GroEL. Each peptide interacts primarily with a single GroEL subunit. Residues R231 and R268 from adjacent subunits isolate each substrate-binding pocket, and prevent bound substrates from sliding into adjacent binding pockets. As a consequence of peptide binding, domains rotate and inter-domain interactions are greatly enhanced. The direction of rotation of the apical domain of each GroEL subunit is opposite to that of its intermediate domain. Viewed from outside, the apical domains rotate clockwise within one GroEL ring, while the ATP-induced apical domain rotation is counter-clockwise.
 
==About this Structure==
1MNF is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MNF OCA].
 
==Reference==
Domain motions in GroEL upon binding of an oligopeptide., Wang J, Chen L, J Mol Biol. 2003 Nov 28;334(3):489-99. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/14623189 14623189]
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Chen, L.]]
[[Category: Chen L]]
[[Category: Wang, J.]]
[[Category: Wang J]]
[[Category: Domain motion]]
[[Category: Forced unfolding]]
[[Category: Groel]]
[[Category: Opposite allosteric]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sat May  3 01:27:23 2008''

Latest revision as of 10:46, 14 February 2024

Domain motions in GroEL upon binding of an oligopeptideDomain motions in GroEL upon binding of an oligopeptide

Structural highlights

1mnf is a 28 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CH60_ECOLI Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

1mnf, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA