1m9r: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1m9r.gif|left|200px]]


{{Structure
==human endothelial nitric oxide synthase with 3-Bromo-7-Nitroindazole bound==
|PDB= 1m9r |SIZE=350|CAPTION= <scene name='initialview01'>1m9r</scene>, resolution 2.56&Aring;
<StructureSection load='1m9r' size='340' side='right'caption='[[1m9r]], [[Resolution|resolution]] 2.56&Aring;' scene=''>
|SITE=
== Structural highlights ==
|LIGAND= <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene> and <scene name='pdbligand=INE:3-BROMO-7-NITROINDAZOLE'>INE</scene>
<table><tr><td colspan='2'>[[1m9r]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M9R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1M9R FirstGlance]. <br>
|ACTIVITY= [http://en.wikipedia.org/wiki/Nitric-oxide_synthase Nitric-oxide synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.39 1.14.13.39]  
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.56&#8491;</td></tr>
|GENE=  
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=INE:3-BROMO-7-NITROINDAZOLE'>INE</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
}}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1m9r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1m9r OCA], [https://pdbe.org/1m9r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1m9r RCSB], [https://www.ebi.ac.uk/pdbsum/1m9r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1m9r ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/NOS3_HUMAN NOS3_HUMAN] Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.<ref>PMID:17264164</ref>  Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.<ref>PMID:17264164</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/m9/1m9r_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1m9r ConSurf].
<div style="clear:both"></div>


'''human endothelial nitric oxide synthase with 3-Bromo-7-Nitroindazole bound'''
==See Also==
 
*[[Nitric Oxide Synthase 3D structures|Nitric Oxide Synthase 3D structures]]
 
== References ==
==Overview==
<references/>
Nitric oxide is a key signaling molecule in many biological processes, making regulation of nitric oxide levels highly desirable for human medicine and for advancing our understanding of basic physiology. Designing inhibitors to specifically target one of the three nitric oxide synthase (NOS) isozymes that form nitric oxide from the L-Arg substrate poses a significant challenge due to the overwhelmingly conserved active sites. We report here 10 new X-ray crystallographic structures of inducible and endothelial NOS oxygenase domains cocrystallized with chlorzoxazone and four nitroindazoles: 5-nitroindazole, 6-nitroindazole, 7-nitroindazole, and 3-bromo-7-nitroindazole. Each of these bicyclic aromatic inhibitors has only one hydrogen bond donor and therefore cannot form the bidentate hydrogen bonds that the L-Arg substrate makes with Glu371. Instead, all of these inhibitors induce a conformational change in Glu371, creating an active site with altered molecular recognition properties. The cost of this conformational change is approximately 1-2 kcal, based on our measured constants for inhibitor binding to the wild-type and E371A mutant proteins. These inhibitors derive affinity by pi-stacking above the heme and replacing both intramolecular (Glu371-Met368) and intermolecular (substrate-Trp366) hydrogen bonds to the beta-sheet architecture underlying the active site. When bound to NOS, high-affinity inhibitors in this class are planar, whereas weaker inhibitors are nonplanar. Isozyme differences were observed in the pterin cofactor site, the heme propionate, and inhibitor positions. Computational docking predictions match the crystallographic results, including the Glu371 conformational change and inhibitor-binding orientations, and support a combined crystallographic and computational approach to isozyme-specific NOS inhibitor analysis and design.
__TOC__
 
</StructureSection>
==Disease==
Known diseases associated with this structure: Alzheimer disease, late-onset, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]], Coronary spasms, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]], Hypertension, pregnancy-induced OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]], Hypertension, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]], Ischemic stroke, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]], Placental abruption OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=163729 163729]]
 
==About this Structure==
1M9R is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1M9R OCA].
 
==Reference==
Conformational changes in nitric oxide synthases induced by chlorzoxazone and nitroindazoles: crystallographic and computational analyses of inhibitor potency., Rosenfeld RJ, Garcin ED, Panda K, Andersson G, Aberg A, Wallace AV, Morris GM, Olson AJ, Stuehr DJ, Tainer JA, Getzoff ED, Biochemistry. 2002 Nov 26;41(47):13915-25. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12437348 12437348]
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Nitric-oxide synthase]]
[[Category: Large Structures]]
[[Category: Single protein]]
[[Category: Aberg A]]
[[Category: Aberg, A.]]
[[Category: Andersson G]]
[[Category: Andersson, G.]]
[[Category: Garcin ED]]
[[Category: Garcin, E D.]]
[[Category: Getzoff ED]]
[[Category: Getzoff, E D.]]
[[Category: Panda K]]
[[Category: Panda, K.]]
[[Category: Rosenfeld RJ]]
[[Category: Rosenfeld, R J.]]
[[Category: Stuehr DJ]]
[[Category: Stuehr, D J.]]
[[Category: Tainer JA]]
[[Category: Tainer, J A.]]
[[Category: Wallace AV]]
[[Category: Wallace, A V.]]
[[Category: HEM]]
[[Category: INE]]
[[Category: ZN]]
[[Category: oxidoreductase]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:40:43 2008''

Latest revision as of 10:42, 14 February 2024

human endothelial nitric oxide synthase with 3-Bromo-7-Nitroindazole boundhuman endothelial nitric oxide synthase with 3-Bromo-7-Nitroindazole bound

Structural highlights

1m9r is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.56Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NOS3_HUMAN Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.[1] Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.[2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
  2. Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com

1m9r, resolution 2.56Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA