1l80: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1l80.jpg|left|200px]]<br /><applet load="1l80" size="350" color="white" frame="true" align="right" spinBox="true"
caption="1l80, resolution 1.8&Aring;" />
'''DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME'''<br />


==Overview==
==DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME==
An attempt has been made to design modified core-packing arrangements in bacteriophage T4 lysozyme. Alternative replacements of the buried residues Leu99, Met102, Val111 and Phe153 were selected using packing calculations and energy minimization. To test the design procedure, a series of multiple mutants was constructed culminating in the replacement L99F/M102L/V111I/F153L. These variants decrease the stability of T4 lysozyme by approximately 0 to 2 kcal/mol. The crystal structures of a number of the variants were determined. In the variant in which Val111 was replaced by Ile, alpha-helix 107-114 moved by approximately 1.5 A, breaking the hydrogen bond between the backbone carbonyl group of Thr109 and the backbone amide group of Gly113. This conformational change was not anticipated by the design procedure. Compensating interactions of magnitude up to 1.1 kcal/mol occur for some sets of mutations, while other sets display nearly additive stability changes. Within experimental error, the stability of the double mutant V111F/F153L is additive, with delta delta G different by only 0.1 kcal/mol from the sum of the two single mutants. The quadruple mutant L99F/M102L/V111I/F153L is destabilized by 0.5 kcal/mol, compared to delta delta G = -1.6 kcal/mol for the sum of the four single mutants. Multiple mutants show smaller overall structural changes from wild-type than M102L or V111I alone. Co-operative changes in structure and stability can be rationalized in terms of specific structural differences between single and multiple mutants. Genuine repacking of the hydrophobic core of T4 lysozyme with minimal effects on structure, stability and activity thus appears to have been achieved.
<StructureSection load='1l80' size='340' side='right'caption='[[1l80]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1l80]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L80 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1L80 FirstGlance]. <br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1l80 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1l80 OCA], [https://pdbe.org/1l80 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1l80 RCSB], [https://www.ebi.ac.uk/pdbsum/1l80 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1l80 ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/l8/1l80_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1l80 ConSurf].
<div style="clear:both"></div>


==About this Structure==
==See Also==
1L80 is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t2 Enterobacteria phage t2] with <scene name='pdbligand=CL:'>CL</scene> and <scene name='pdbligand=BME:'>BME</scene> as [http://en.wikipedia.org/wiki/ligands ligands]. Active as [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1L80 OCA].
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
 
== References ==
==Reference==
<references/>
Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme., Hurley JH, Baase WA, Matthews BW, J Mol Biol. 1992 Apr 20;224(4):1143-59. PMID:[http://ispc.weizmann.ac.il//pmbin/getpm?pmid=1569571 1569571]
__TOC__
[[Category: Enterobacteria phage t2]]
</StructureSection>
[[Category: Lysozyme]]
[[Category: Escherichia virus T4]]
[[Category: Single protein]]
[[Category: Large Structures]]
[[Category: Hurley, J H.]]
[[Category: Hurley JH]]
[[Category: Matthews, B W.]]
[[Category: Matthews BW]]
[[Category: BME]]
[[Category: CL]]
[[Category: hydrolase (o-glycosyl)]]
 
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 13:42:16 2008''

Latest revision as of 10:30, 14 February 2024

DESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYMEDESIGN AND STRUCTURAL ANALYSIS OF ALTERNATIVE HYDROPHOBIC CORE PACKING ARRANGEMENTS IN BACTERIOPHAGE T4 LYSOZYME

Structural highlights

1l80 is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042

1l80, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA