8ayq: Difference between revisions

No edit summary
No edit summary
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[8ayq]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_cereus_ATCC_14579 Bacillus cereus ATCC 14579]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8AYQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8AYQ FirstGlance]. <br>
<table><tr><td colspan='2'>[[8ayq]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_cereus_ATCC_14579 Bacillus cereus ATCC 14579]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8AYQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8AYQ FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=RB:RUBIDIUM+ION'>RB</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.75&#8491;</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene>, <scene name='pdbligand=RB:RUBIDIUM+ION'>RB</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8ayq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8ayq OCA], [https://pdbe.org/8ayq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8ayq RCSB], [https://www.ebi.ac.uk/pdbsum/8ayq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8ayq ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8ayq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8ayq OCA], [https://pdbe.org/8ayq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8ayq RCSB], [https://www.ebi.ac.uk/pdbsum/8ayq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8ayq ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/Q81HW2_BACCR Q81HW2_BACCR]  
[https://www.uniprot.org/uniprot/Q81HW2_BACCR Q81HW2_BACCR]  
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are neurotransmitter-activated cation channels ubiquitously expressed in vertebrate brains. The regulation of calcium flux through the channel pore by RNA-editing is linked to synaptic plasticity while excessive calcium influx poses a risk for neurodegeneration. Unfortunately, the molecular mechanisms underlying this key process are mostly unknown. Here, we investigated calcium conduction in calcium-permeable AMPAR using Molecular Dynamics (MD) simulations with recently introduced multisite force-field parameters for Ca(2+). Our calculations are consistent with experiment and explain the distinct calcium permeability in different RNA-edited forms of GluA2. For one of the identified metal binding sites, multiscale Quantum Mechanics/Molecular Mechanics (QM/MM) simulations further validated the results from MD and revealed small but reproducible charge transfer between the metal ion and its first solvation shell. In addition, the ion occupancy derived from MD simulations independently reproduced the Ca(2+) binding profile in an X-ray structure of an NaK channel mimicking the AMPAR selectivity filter. This integrated study comprising X-ray crystallography, multisite MD, and multiscale QM/MM simulations provides unprecedented insights into Ca(2+) permeation mechanisms in AMPARs, and paves the way for studying other biological processes in which Ca(2+) plays a pivotal role.


Mechanism of Calcium Permeation in a Glutamate Receptor Ion Channel.,Schackert FK, Biedermann J, Abdolvand S, Minniberger S, Song C, Plested AJR, Carloni P, Sun H J Chem Inf Model. 2023 Feb 9. doi: 10.1021/acs.jcim.2c01494. PMID:36758214<ref>PMID:36758214</ref>
==See Also==
 
*[[Potassium channel 3D structures|Potassium channel 3D structures]]
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 8ayq" style="background-color:#fffaf0;"></div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA