1isu: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
==THE THREE-DIMENSIONAL STRUCTURE OF THE HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM THE PURPLE PHOTOTROPHIC BACTERIUM RHODOCYCLUS TENUIS DETERMINED AND REFINED AT 1.5 ANGSTROMS RESOLUTION==
==THE THREE-DIMENSIONAL STRUCTURE OF THE HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM THE PURPLE PHOTOTROPHIC BACTERIUM RHODOCYCLUS TENUIS DETERMINED AND REFINED AT 1.5 ANGSTROMS RESOLUTION==
<StructureSection load='1isu' size='340' side='right' caption='[[1isu]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
<StructureSection load='1isu' size='340' side='right'caption='[[1isu]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1isu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhodocyclus_tenuis Rhodocyclus tenuis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ISU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ISU FirstGlance]. <br>
<table><tr><td colspan='2'>[[1isu]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodocyclus_tenuis Rhodocyclus tenuis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ISU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ISU FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene><br>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1isu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1isu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1isu RCSB], [http://www.ebi.ac.uk/pdbsum/1isu PDBsum]</span></td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr>
<table>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1isu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1isu OCA], [https://pdbe.org/1isu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1isu RCSB], [https://www.ebi.ac.uk/pdbsum/1isu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1isu ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HIP2_RHOTE HIP2_RHOTE] Specific class of high-redox-potential 4Fe-4S ferredoxins. Functions in anaerobic electron transport in most purple and in some other photosynthetic bacteria and in at least one genus (Paracoccus) of halophilic, denitrifying bacteria.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/is/1isu_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/is/1isu_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1isu ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The molecular structure of the high-potential iron-sulfur protein (HiPIP) isolated from the phototrophic bacterium, Rhodocyclus tenuis, has been solved and refined to a nominal resolution of 1.5 A with a crystallographic R-factor of 17.3% for all measured X-ray data from 30 A to 1.5 A. It is the smallest of the HiPIP structures studied thus far with 62 amino acid residues. Crystals used in the investigation belonged to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A and beta = 90.8 degrees and contained two molecules per asymmetric unit. The structure was solved by a combination of multiple isomorphous replacement with two heavy-atom derivatives, anomalous scattering from the iron-sulfur cluster, symmetry averaging and solvent flattening. The folding motif for this HiPIP is characterized by one small alpha-helix, six Type I turns, an approximate Type II turn and one Type I' turn. As in other HiPIPs, the iron-sulfur cluster is co-ordinated by four cysteinyl ligands and exhibits a cubane-like motif. These cysteinyl ligands are all located in Type I turns. The hydrogen bonding around the metal cluster in the R. tenuis protein is similar to the patterns observed in the Chromatium vinosum and Ectothiorhodospira halophila HiPIPs. Several of the amino acid residues invariant in the previously determined C. vinosum and E. halophila structures are not retained in the R. tenuis molecule. There are 13 solvent molecules structurally conserved between the two R. tenuis HiPIP molecules in the asymmetric unit, some of which are important for stabilizing surface loops. Interestingly, while it is assumed that this HiPIP functions as a monomer in solution, the two molecules in the asymmetric unit pack as a dimer and are related to each other by an approximate twofold rotation axis.
Three-dimensional structure of the high-potential iron-sulfur protein isolated from the purple phototrophic bacterium Rhodocyclus tenuis determined and refined at 1.5 A resolution.,Rayment I, Wesenberg G, Meyer TE, Cusanovich MA, Holden HM J Mol Biol. 1992 Nov 20;228(2):672-86. PMID:1453470<ref>PMID:1453470</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Rhodocyclus tenuis]]
[[Category: Rhodocyclus tenuis]]
[[Category: Holden, H M.]]
[[Category: Holden HM]]

Latest revision as of 10:37, 7 February 2024

THE THREE-DIMENSIONAL STRUCTURE OF THE HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM THE PURPLE PHOTOTROPHIC BACTERIUM RHODOCYCLUS TENUIS DETERMINED AND REFINED AT 1.5 ANGSTROMS RESOLUTIONTHE THREE-DIMENSIONAL STRUCTURE OF THE HIGH-POTENTIAL IRON-SULFUR PROTEIN ISOLATED FROM THE PURPLE PHOTOTROPHIC BACTERIUM RHODOCYCLUS TENUIS DETERMINED AND REFINED AT 1.5 ANGSTROMS RESOLUTION

Structural highlights

1isu is a 2 chain structure with sequence from Rhodocyclus tenuis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HIP2_RHOTE Specific class of high-redox-potential 4Fe-4S ferredoxins. Functions in anaerobic electron transport in most purple and in some other photosynthetic bacteria and in at least one genus (Paracoccus) of halophilic, denitrifying bacteria.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

1isu, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA