1hqy: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:1hqy.gif|left|200px]]


<!--
==Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU==
The line below this paragraph, containing "STRUCTURE_1hqy", creates the "Structure Box" on the page.
<StructureSection load='1hqy' size='340' side='right'caption='[[1hqy]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
You may change the PDB parameter (which sets the PDB file loaded into the applet)
== Structural highlights ==
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
<table><tr><td colspan='2'>[[1hqy]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_BL21(DE3) Escherichia coli BL21(DE3)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HQY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HQY FirstGlance]. <br>
or leave the SCENE parameter empty for the default display.
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8&#8491;</td></tr>
-->
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
{{STRUCTURE_1hqy| PDB=1hqy |  SCENE= }}
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hqy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hqy OCA], [https://pdbe.org/1hqy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hqy RCSB], [https://www.ebi.ac.uk/pdbsum/1hqy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hqy ProSAT]</span></td></tr>
</table>
== Function ==
[https://www.uniprot.org/uniprot/HSLV_ECOLI HSLV_ECOLI] Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. HslV is not believed to degrade folded proteins.<ref>PMID:8662828</ref> <ref>PMID:8650174</ref> <ref>PMID:9288941</ref> <ref>PMID:9393683</ref> <ref>PMID:10452560</ref> <ref>PMID:10419524</ref> <ref>PMID:15696175</ref>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hq/1hqy_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hqy ConSurf].
<div style="clear:both"></div>


'''Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU'''
==See Also==
 
*[[Heat Shock Protein structures|Heat Shock Protein structures]]
 
== References ==
==Overview==
<references/>
BACKGROUND: The bacterial heat shock locus ATPase HslU is an AAA(+) protein that has structures known in many nucleotide-free and -bound states. Nucleotide is required for the formation of the biologically active HslU hexameric assembly. The hexameric HslU ATPase binds the dodecameric HslV peptidase and forms an ATP-dependent HslVU protease. RESULTS: We have characterized four distinct HslU conformational states, going sequentially from open to closed: the empty, SO(4), ATP, and ADP states. The nucleotide binds at a cleft formed by an alpha/beta domain and an alpha-helical domain in HslU. The four HslU states differ by a rotation of the alpha-helical domain. This classification leads to a correction of nucleotide identity in one structure and reveals the ATP hydrolysis-dependent structural changes in the HslVU complex, including a ring rotation and a conformational change of the HslU C terminus. This leads to an amended protein unfolding-coupled translocation mechanism. CONCLUSIONS: The observed nucleotide-dependent conformational changes in HslU and their governing principles provide a framework for the mechanistic understanding of other AAA(+) proteins.
__TOC__
 
</StructureSection>
==About this Structure==
[[Category: Large Structures]]
1HQY is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HQY OCA].
[[Category: Chung CH]]
 
[[Category: Eom SH]]
==Reference==
[[Category: Franklin MC]]
Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU., Wang J, Song JJ, Seong IS, Franklin MC, Kamtekar S, Eom SH, Chung CH, Structure. 2001 Nov;9(11):1107-16. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11709174 11709174]
[[Category: Kamtekar S]]
[[Category: Escherichia coli]]
[[Category: Seong IS]]
[[Category: Protein complex]]
[[Category: Song JJ]]
[[Category: Chung, C H.]]
[[Category: Wang J]]
[[Category: Eom, S H.]]
[[Category: Franklin, M C.]]
[[Category: Kamtekar, S.]]
[[Category: Seong, I S.]]
[[Category: Song, J J.]]
[[Category: Wang, J.]]
[[Category: Hslvu]]
[[Category: Peptidase-atpase complex]]
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri May  2 19:08:41 2008''

Latest revision as of 10:29, 7 February 2024

Nucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslUNucleotide-Dependent Conformational Changes in a Protease-Associated ATPase HslU

Structural highlights

1hqy is a 6 chain structure with sequence from Escherichia coli BL21(DE3). Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HSLV_ECOLI Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery. The complex has been shown to be involved in the specific degradation of heat shock induced transcription factors such as RpoH and SulA. In addition, small hydrophobic peptides are also hydrolyzed by HslV. HslV has weak protease activity even in the absence of HslU, but this activity is induced more than 100-fold in the presence of HslU. HslU recognizes protein substrates and unfolds these before guiding them to HslV for hydrolysis. HslV is not believed to degrade folded proteins.[1] [2] [3] [4] [5] [6] [7]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Yoo SJ, Seol JH, Shin DH, Rohrwild M, Kang MS, Tanaka K, Goldberg AL, Chung CH. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J Biol Chem. 1996 Jun 14;271(24):14035-40. PMID:8662828
  2. Rohrwild M, Coux O, Huang HC, Moerschell RP, Yoo SJ, Seol JH, Chung CH, Goldberg AL. HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5808-13. PMID:8650174
  3. Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur J Biochem. 1997 Aug 1;247(3):1143-50. PMID:9288941
  4. Kanemori M, Nishihara K, Yanagi H, Yura T. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol. 1997 Dec;179(23):7219-25. PMID:9393683
  5. Seong IS, Oh JY, Yoo SJ, Seol JH, Chung CH. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett. 1999 Jul 30;456(1):211-4. PMID:10452560
  6. Kanemori M, Yanagi H, Yura T. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J Biol Chem. 1999 Jul 30;274(31):22002-7. PMID:10419524
  7. Burton RE, Baker TA, Sauer RT. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol. 2005 Mar;12(3):245-51. Epub 2005 Feb 6. PMID:15696175 doi:10.1038/nsmb898

1hqy, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA