1hmc: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
==THREE-DIMENSIONAL STRUCTURE OF DIMERIC HUMAN RECOMBINANT MACROPHAGE COLONY STIMULATING FACTOR==
==THREE-DIMENSIONAL STRUCTURE OF DIMERIC HUMAN RECOMBINANT MACROPHAGE COLONY STIMULATING FACTOR==
<StructureSection load='1hmc' size='340' side='right' caption='[[1hmc]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
<StructureSection load='1hmc' size='340' side='right'caption='[[1hmc]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1hmc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HMC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HMC FirstGlance]. <br>
<table><tr><td colspan='2'>[[1hmc]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HMC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HMC FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hmc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hmc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hmc RCSB], [http://www.ebi.ac.uk/pdbsum/1hmc PDBsum]</span></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hmc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hmc OCA], [https://pdbe.org/1hmc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hmc RCSB], [https://www.ebi.ac.uk/pdbsum/1hmc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hmc ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
[[http://www.uniprot.org/uniprot/CSF1_HUMAN CSF1_HUMAN]] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref>  Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref>
[https://www.uniprot.org/uniprot/CSF1_HUMAN CSF1_HUMAN] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref>  Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref>  
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CSF1_HUMAN CSF1_HUMAN]] Cytokine that plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone development. Required for normal male and female fertility. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration. Plays a role in lipoprotein clearance.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref>
[https://www.uniprot.org/uniprot/CSF1_HUMAN CSF1_HUMAN] Cytokine that plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone development. Required for normal male and female fertility. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration. Plays a role in lipoprotein clearance.<ref>PMID:16337366</ref> <ref>PMID:19934330</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hm/1hmc_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hm/1hmc_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
   </jmolCheckbox>
   </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hmc ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Macrophage colony-stimulating factor (M-CSF) triggers the development of cells of the monocyte-macrophage lineage and has a variety of stimulatory effects on mature cells of this class. The biologically active form of M-CSF is a disulfide-linked dimer that activates an intrinsic tyrosine kinase activity on the M-CSF receptor by inducing dimerization of the receptor molecules. The structure of a recombinant human M-CSF dimer, determined at 2.5 angstroms by x-ray crystallography, contains two bundles of four alpha helices laid end-to-end, with an interchain disulfide bond. Individual monomers of M-CSF show a close structural similarity to the cytokines granulocyte-macrophage colony-stimulating factor and human growth hormone. Both of these cytokines are monomeric in their active form, and their specific receptors lack intrinsic tyrosine kinase activity. The similarity of these structures suggests that the receptor binding determinants for all three cytokines may be similar.
Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor.,Pandit J, Bohm A, Jancarik J, Halenbeck R, Koths K, Kim SH Science. 1992 Nov 20;258(5086):1358-62. PMID:1455231<ref>PMID:1455231</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
== References ==
== References ==
<references/>
<references/>
Line 32: Line 26:
</StructureSection>
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Bohm, A]]
[[Category: Large Structures]]
[[Category: Halenbeck, R]]
[[Category: Bohm A]]
[[Category: Jancarik, J]]
[[Category: Halenbeck R]]
[[Category: Kim, S H]]
[[Category: Jancarik J]]
[[Category: Koths, K]]
[[Category: Kim S-H]]
[[Category: Pandit, J]]
[[Category: Koths K]]
[[Category: Macrophage colony stimulating factor]]
[[Category: Pandit J]]

Latest revision as of 10:28, 7 February 2024

THREE-DIMENSIONAL STRUCTURE OF DIMERIC HUMAN RECOMBINANT MACROPHAGE COLONY STIMULATING FACTORTHREE-DIMENSIONAL STRUCTURE OF DIMERIC HUMAN RECOMBINANT MACROPHAGE COLONY STIMULATING FACTOR

Structural highlights

1hmc is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CSF1_HUMAN Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.[1] [2] Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.[3] [4]

Function

CSF1_HUMAN Cytokine that plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone development. Required for normal male and female fertility. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration. Plays a role in lipoprotein clearance.[5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006 Feb;18(1):39-48. Epub 2005 Dec 6. PMID:16337366 doi:10.1016/j.coi.2005.11.006
  2. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009 Dec 15;69(24):9498-506. doi: 10.1158/0008-5472.CAN-09-1868. Epub, . PMID:19934330 doi:10.1158/0008-5472.CAN-09-1868
  3. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006 Feb;18(1):39-48. Epub 2005 Dec 6. PMID:16337366 doi:10.1016/j.coi.2005.11.006
  4. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009 Dec 15;69(24):9498-506. doi: 10.1158/0008-5472.CAN-09-1868. Epub, . PMID:19934330 doi:10.1158/0008-5472.CAN-09-1868
  5. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006 Feb;18(1):39-48. Epub 2005 Dec 6. PMID:16337366 doi:10.1016/j.coi.2005.11.006
  6. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009 Dec 15;69(24):9498-506. doi: 10.1158/0008-5472.CAN-09-1868. Epub, . PMID:19934330 doi:10.1158/0008-5472.CAN-09-1868
  7. Eda H, Zhang J, Keith RH, Michener M, Beidler DR, Monahan JB. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood. Cytokine. 2010 Dec;52(3):215-20. doi: 10.1016/j.cyto.2010.08.005. Epub 2010 Sep, 9. PMID:20829061 doi:10.1016/j.cyto.2010.08.005
  8. Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, Williams LT, Lin H, Stanley ER. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010 Sep;88(3):495-505. doi: 10.1189/jlb.1209822. Epub 2010 May, 26. PMID:20504948 doi:10.1189/jlb.1209822

1hmc, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA