1ffs: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
==CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM CRYSTALS SOAKED IN ACETYL PHOSPHATE==
==CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM CRYSTALS SOAKED IN ACETYL PHOSPHATE==
<StructureSection load='1ffs' size='340' side='right' caption='[[1ffs]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='1ffs' size='340' side='right'caption='[[1ffs]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[1ffs]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FFS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1FFS FirstGlance]. <br>
<table><tr><td colspan='2'>[[1ffs]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FFS FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.4&#8491;</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1a0o|1a0o]], [[1ffg|1ffg]], [[1ffw|1ffw]]</td></tr>
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ffs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ffs OCA], [http://pdbe.org/1ffs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ffs RCSB], [http://www.ebi.ac.uk/pdbsum/1ffs PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ffs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ffs OCA], [https://pdbe.org/1ffs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ffs RCSB], [https://www.ebi.ac.uk/pdbsum/1ffs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ffs ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI]] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref> [[http://www.uniprot.org/uniprot/CHEA_ECOLI CHEA_ECOLI]] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to either CheB or CheY.
[https://www.uniprot.org/uniprot/CHEY_ECOLI CHEY_ECOLI] Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.<ref>PMID:20346719</ref>  
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
   <jmolCheckbox>
   <jmolCheckbox>
     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ff/1ffs_consurf.spt"</scriptWhenChecked>
     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ff/1ffs_consurf.spt"</scriptWhenChecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
     <text>to colour the structure by Evolutionary Conservation</text>
     <text>to colour the structure by Evolutionary Conservation</text>
Line 19: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ffs ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ffs ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
New crystallographic structures of the response regulator CheY in association with CheA(124--257), its binding domain in the kinase CheA, have been determined. In all crystal forms, the molecular interactions at the heterodimer interface are identical. Soaking experiments have been performed on the crystals using acetyl phosphate as phosphodonor to CheY. No phosphoryl group attached to Asp57 of CheY is visible from the electron density, but the response regulator in the CheY-CheA(124--257) complex may have undergone a phosphorylation-dephosphorylation process. The distribution of water molecules and the geometry of the active site have changed and are now similar to those of isolated CheY. In a second soaking experiment, imido-diphosphate, an inhibitor of the phosphorylation reaction, was used. This compound binds in the vicinity of the active site, close to the N-terminal part of the first alpha-helix. Together, these results suggest that the binding of CheY to CheA(124--257) generates a geometry of the active site that favours phosphorylation and that imido-diphosphate interferes with phosphorylation by precluding structural changes in this region.
Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheY--CheA(124--257) complex.,Gouet P, Chinardet N, Welch M, Guillet V, Cabantous S, Birck C, Mourey L, Samama JP Acta Crystallogr D Biol Crystallogr. 2001 Jan;57(Pt 1):44-51. PMID:11134926<ref>PMID:11134926</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
<div class="pdbe-citations 1ffs" style="background-color:#fffaf0;"></div>


==See Also==
==See Also==
*[[Chemotaxis protein|Chemotaxis protein]]
*[[Chemotaxis protein 3D structures|Chemotaxis protein 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Bacillus coli migula 1895]]
[[Category: Escherichia coli]]
[[Category: Birck, C]]
[[Category: Large Structures]]
[[Category: Chinardet, N]]
[[Category: Birck C]]
[[Category: Gouet, P]]
[[Category: Chinardet N]]
[[Category: Guillet, V]]
[[Category: Gouet P]]
[[Category: Mourey, L]]
[[Category: Guillet V]]
[[Category: Samama, J P]]
[[Category: Mourey L]]
[[Category: Welch, M]]
[[Category: Samama J-P]]
[[Category: Transferase-signaling protein complex]]
[[Category: Welch M]]

Latest revision as of 10:14, 7 February 2024

CHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM CRYSTALS SOAKED IN ACETYL PHOSPHATECHEY-BINDING DOMAIN OF CHEA IN COMPLEX WITH CHEY FROM CRYSTALS SOAKED IN ACETYL PHOSPHATE

Structural highlights

1ffs is a 4 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHEY_ECOLI Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Overexpression of CheY in association with MotA and MotB improves motility of a ycgR disruption, suggesting there is an interaction (direct or indirect) between the c-di-GMP-binding flagellar brake protein and the flagellar stator.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell. 2010 Apr 9;38(1):128-39. doi: 10.1016/j.molcel.2010.03.001. Epub 2010, Mar 25. PMID:20346719 doi:10.1016/j.molcel.2010.03.001

1ffs, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA